
Session Types for Rust

Thomas Bracht Laumann Jespersen Philip Munksgaard Ken Friis Larsen
Department of Computer Science, University of Copenhagen, Denmark

ntl316@alumni.ku.dk pmunksgaard@gmail.com kflarsen@diku.dk

Abstract
We present a library for specifying session types implemented in
Rust, and discuss practical use cases through examples and demon-
strate how session types may be used in a large-scale application.
Specifically we adapt parts of the ad-hoc communication patterns
in the Servo browser engine to use session typed channels. Session
types provide a protocol abstraction, expanding on traditional typed
communication channels, to ensure that communication takes place
according to a specified protocol. Thus, the library allows us to pro-
vide compile-time guarantees of adherence to a specific protocol
without incurring significant run-time penalties.

Categories and Subject Descriptors D.1.3 [Software Program-
ming Techniques]: Concurrent programming; D.3.3 [Language
Constructs and Features]: Concurrent programming structures

Keywords Session types, concurrency, generic types, Rust

1. Introduction
Communication in concurrent applications is often implemented
by message-passing, in which two processes can exchange in-
formation via a channel. Typically channels are uni-directional
and reciprocal interaction is implemented by means of two uni-
directional channels. In large concurrent applications the commu-
nication schemes often implement an implicit ad hoc protocol, and
it is the responsibility of the programmer to ensure that the proto-
col is obeyed, as message-passing libraries usually do not offer any
mechanisms for specifying protocols.

Session types allow the specification of protocols as types and
its associated type discipline ensures that only compatible session
type protocols are typeable. Session types require a linear usage of
the channels and this is a challenge in the majority of programming
languages where aliasing is allowed.

We implement session types in the programming language Rust
which provides affine types and argue that affine types are sufficient
for preventing protocol violations.

The appeal of session types is that they provide a static guar-
antee of protocol safety and in our implementation there are no
run-time checks to ensure protocol safety, so we argue that the per-
formance overhead of using session types is small.

2. Background
The section gives an introduction to Rust and session types. We
describe some of the features of Rust that are important to our
implementation of session types in Section 2.1, and describe the
session typing system in Section 2.2.

2.1 Rust
Rust is a systems programming language, initially developed in-
dependently by Graydon Hoare before being adopted by Mozilla
and developed on a larger scale. The main purpose of Rust is to
enable programmers to easily write fast and efficient programs that
are both memory and thread safe.

Because it is aimed at being a systems programming language,
Rust is designed to offer a high level of control over low-level
details like memory allocation, so the programmer can reason about
how the program will behave at run-time. In particular, this means
that there is no garbage collection. To achieve safety in the absence
of garbage collection, Rust employs compile-time static analysis
techniques and semantics to determine exactly when an allocated
value goes out of scope such that it can be freed. Thus, the Rust
compiler decides, at compile-time, where to place destructors and
drop statements, freeing the programmer from that responsibility,
while guaranteeing memory safety.

Rust also incorporates features typically associated with func-
tional languages of the ML family, such as pattern matching, al-
gebraic data types, strong static typing, higher-order functions
and closures. Syntactically, Rust is close to C, employing brace-
delineated blocks for structure and semi-colons to terminate state-
ments. For an in-depth introduction to Rust, we refer to the online
book The Rust Programming Language1.

The development of Rust is community-driven and publicly
available on GitHub2. At the time of writing, there is no official
language specification, but there is a reference document that in-
formally describes the language constructs, the memory model and
other parts of the language [5]. Work has been done to provide a
formalization of Rust, with formal semantics and soundness proofs
for a collection of core operations [6]. The Rust compiler, rustc,
serves as a reference implementation.

Move Semantics, Borrows and Affine Types Rust brings some
new and innovative concepts into mainstream programming lan-
guages, the most significant is probably its statically guaranteed
memory safety (while still retaining control over low-level details),
which is achieved through the borrow system and by using move
semantics. This section serves as an introduction to the borrow sys-
tem, move semantics, and how Rust supports affine types through
these concepts, all of which are essential to the implementation of
our session type library.

1 https://doc.rust-lang.org/nightly/book/
2 http://github.com/rust-lang/rust

https://doc.rust-lang.org/nightly/book/
http://github.com/rust-lang/rust

struct Foo;

fn bar() {
let x = Foo; // initialize x
let y = x; // consume x

}

Figure 1. Moving values in Rust

By default, using a value in Rust consumes the value, which
means that it cannot be used again at a later point. Consider the
example in Figure 1. Assigning x to y consumes x and makes
future references to x illegal. For instance, if we tried to assign x to
another value z or use x in a function after we had already assigned
x to y, that would result in a compile time error. This behavior is
called move semantics, and we also say that x is moved into y. For
example, a call like some fun(x) would move x into some fun
and make it unavailable in the calling function. In addition to
move semantics, Rust also supports copy semantics where you
make a copy of a value before using it, which mimic traditional
behavior from languages such as C. Copy semantics is the default
for primitive types and can be opted into for compound data types.

With these semantics, Rust can determine when to safely deal-
locate resources: Each value has a unique owner, a scope, which
can change through function calls, assignments, etc. If a value has
not been consumed by the end of its owning scope, Rust can safely
deallocate it. At the end of the function bar() in Figure 1, there are
no more references to y, so the Rust compiler automatically inserts
deallocation calls.

To support multiple references to the same value, Rust uses a
concept called borrowing. A reference, sometimes called a borrow,
can be either mutable or immutable. An immutable reference to a
value x is denoted &x and a mutable reference is denoted &mut x.
See Figure 2 for an example that uses both mutable and immutable
references. To support the move semantics in Rust, all references
carry information about the scope in which it can be used, called
its lifetime. In the simplest case, a reference’s lifetime is the scope
in which it is declared, but it can also be tied to other references’
lifetimes. Using lifetimes, Rust is able to statically guarantee that
references never outlive their referent. Additionally, the borrow
system ensures that data races cannot happen: A mutable reference,
through which we can mutate the original data, excludes all other
references, both mutable and immutable, and any reference at all
prohibits mutation of the referent. This way, mutation can only
happen with exclusive access and data races are avoided.

As a small aside, sometimes it is necessary to be able to express
safe programs that cannot be statically verified and Rust provides
an escape hatch via the keyword unsafe. The keyword unsafe
is used to mark functions, blocks of code, traits and method im-
plementations as unsafe, telling Rust to set aside some of its usual
safety checks. This lets you handle, among other things, raw point-
ers, perform foreign function calls to C code, manually handle
memory allocation and deallocation. When a piece of code has been
marked unsafe it is the programmer’s responsibility to ensure that
Rust’s safety guarantees are restored at the end of the code.

Because of its move semantics, we can say that Rust has an
affine type system. By wrapping essential data in non-copying
data structures and ensuring that all methods and functions which
interact with said data structures are consuming, that data type
becomes affine: We can guarantee that values of that type are
used at most once. That Rust has affine types is essential for our
implementation of session types. However, before we introduce our
library we provide a short introduction to session types.

struct Foo(u8);

fn print_foo(&Foo(n): &Foo) {
println!("Foo({})", n);

}

fn add1(x: &mut Foo) {
x.0 += 1;

}

let mut x = Foo(42);

{ // --+
let r = &mut x; // | lifetime
add1(r); // | of ‘r‘
add1(r); // |

} // --+

print_foo(&x); // outputs "Foo(44)"

Figure 2. Using references in Rust

2.2 Session Types
Session types were introduced in [2] and provided a new method
for structuring sequences of reciprocal interactions in a type-safe
manner. Concurrency primitives based on message-passing have
been studied greatly and implemented in a host of programming
languages, but typically each interaction is considered distinct and
unrelated to other interactions. The session type theory introduced
a basic structuring concept called a session. A session has an asso-
ciated (implicit) channel through which all interactions take place
and the interactions via a session are modelled by a type—called
a session type. The typing system ensures that two processes only
communicate via a session if their session types are compatible.
Session types allow the programmer to specify complex communi-
cation protocols without worrying about run-time errors caused by
violations of the protocol.

As a concept session types are suitable for embedding in other
programming languages, but were initially developed in its own
language L to better showcase the novel features of the system in
a minimal language. Since their introduction, session types have
been studied widely and re-formulated in other formal frameworks,
in particular the π-calculus [8], and have been implemented in a
variety of programming languages, both as libraries and language
extensions [1, 7].

The Honda-Vasconcelos-Kubo Session Typing System To illus-
trate the session typing concepts, we will work with an example
protocol that specifies the interaction between a client (CLIENT)
and an ATM:3

• The CLIENT communicates his/her ID to the ATM
• The ATM then answers either ok or err

In the first case, the CLIENT then proceeds to request either
a deposit or withdraw

− For a deposit the CLIENT first sends an amount, then
the ATM responds with the updated balance

− For a withdraw the CLIENT sends the amount to with-
draw, and the ATM responds with either ok or err to
indicate whether or not the transaction was successful

3 This example is originally from [3] and has been adapted and used by
several authors.

S ::= nat | bool | 〈α, α〉 | · · ·
α ::= ?[S̃];α | ?[α];β | &{`1 : α1, . . . , `n : αn} | ε | ⊥
| ![S̃];α | ![α];β | ⊕{`1 : α1, . . . , `n : αn} | t | µt.α

Figure 3. The syntax of types in L.

If the ATM answers err, then the session terminates.

From the point of view of the ATM, we can describe this protocol
by the session type:

ATM = ?[id];⊕{ok : ATM′, err : ε}
ATM′= &{ deposit : ?[u64]; ![u64]; ε,

withdraw : ?[u64];⊕{ok : ε, err : ε}
}

The interactions “send” and “receive” are denoted by ! and ? re-
spectively and for each occurence, there is an associated type—the
type of the value being communicated.

The ⊕{`1 : α1, . . . , `n : αn} construct is called branch
selection, and indicates that the process selects one of the branches
`i. This choice is then communicated to the other party, and the
process continues with the protocol αi. For example in the ATM,
after receiving the client’s id the ATM selects either the ok or the
err branch and communicates the respective label to the client.

The opposite of branch selection is label branching and is de-
noted by &{`1 : α1, . . . , `n : αn}. Here the process obtains the
selected branch `i from the other party and continues with the se-
lected protocol αi (this is also sometimes called passive selection).
The ATM′ type offers the branches deposit and withdraw, and
waits for the client to communicate the selected branch.

A session type terminates when ε is reached and no further com-
munication in that session is possible. In the ATM protocol, all of
the branches are terminated by ε and only allows one of deposit
or withdraw before terminating (we will amend this shortly). Note
that there are two ways to terminate the withdraw branch in ATM′.
Its final ⊕{ok : ε, err : ε} may seem redundant, but it demon-
strates how branches can be used to convey information by them-
selves: The client knows that if the err branch is taken, the request
was unsuccessful.

An important aspect of session types is the sequencing of ac-
tions built into the types. All interactions, except for ε, cannot stand
on their own, but have some notion of a subsequent action. For ex-
ample, the syntax for “send” is ![S̃];α, where α is some session
type. Once the process has performed the “send” action, that par-
ticular interaction cannot be performed again, as the type of the
session becomes α.

The full syntax of session types is shown in Figure 3.

Recursion As mentioned earlier, the ATM session type only al-
lows one of deposit or withdraw before terminating. Often we
may be interested in repeating a protocol, and we can use recursion
to achieve this. Recursion is denoted by µt.α, in which occurrences
of t in α are substituted for α in the usual way.

To illustrate the use of recursion we modify the ATM′ session
type in the following way:

ATM′ = µt.&{ deposit : ?[u64]; ![u64]; t,
withdraw : ?[u64];⊕{ok : t, err : t},
quit : ε
}

where we have added µt before the label branching, and replaced
all occurrences of ε with t, to recurse at that point and repeat the
protocol from µt. We then introduce another branch quit, to allow

![S̃];α = ?[S̃];α ⊕{li : αi}i∈I = &{li : αi}i∈I

?[S̃];α = ![S̃];α &{li : αi}i∈I = ⊕{li : αi}i∈I

![α];β = ?[α];β ε = ε

?[α];β = ![α];β µt.α = µt.α

Figure 4. The co-type (or dual) of a type α is denoted α.

the client to terminate the session. (In the subsequent sections, we
use this version of the ATM session type.)

Recursive types are assumed to be contractive, meaning that
types do not contain a subexpression of the form µt.µt1. · · ·µtn.t,
and the typing system takes an equi-recursive view of types, con-
sidering µt.α and its expansion α[µt.α/t] equivalent.

Duality An important concept in session types is the concept of
duality. It is a formulation of the idea that if a process speaks
a particular protocol, then its correspondant must be prepared to
understand it. For example, if a process wishes to send a value and
has the session type ![S̃];α, the opposing process must be prepared
to receive a value of same type. Its type must then be ?[S̃];α, where
α denotes the dual of α.

Given a session type α we can find its dual by exchanging !
and ?, and ⊕ and &. Formally, the dual is defined inductively on a
session type as shown in Figure 4.

The dual of our ATM type—the session type for the client—is
then found to be:

ATM = ![id]; &{ok : ATM′, err : ε}
ATM′= µt.⊕{ deposit : ![u64]; ?[u64]; t,

withdraw : ![u64]; &{ok : t, err : t},
quit : ε
}

Duality is the basic requirement for communication safety. Two
communicating processes are considered compatible if their ses-
sion types are dual, and only when they are dual is the program
well-typed.

Session Delegation One feature of the session typing system
we have not yet mentioned is session delegation which allows a
process to hand over its session to another process. After delegating
a session, the original owner of the session can no longer interact
with it. Session delegation originally received special treatment to
prevent aliasing of sessions. Session types have subsequently been
formulated in the context of a functional language with linear types,
and it has been shown that this is sufficient to prevent aliasing.

In Section 3.4 we show how to leverage Rust’s affine type sys-
tem to implement session interaction, and directly avoid aliasing.
As a result, we do not have to treat session delegation with any
extra care, so we will not discuss it further.

3. Session Types in Rust
This section describes our implementation of session types in Rust.
Our implementation largely mirrors the interface of the Haskell
implementation described in [1], but instead of passing channels in
a Session monad, we provide a Chan type that has an associated
protocol.

3.1 Type Constructs
Each construct in the original session types formulation has a cor-
responding struct representation in our library. The empty protocol
ε is represented by the unit struct Eps. The “send” construct is rep-
resented by the struct

struct Send<A, P>(PhantomData<(A, P)>)

where A is the type of the value to send, and P is the protocol to
execute after Send has been executed. The PhantomData field is
a marker indicating that the type parameters A and P are phan-
tom types. Unused type parameters (phantom types) are not per-
mitted by the Rust compiler and must be marked explicitly using
PhantomData. The “recv” construct is analogous.

The branching constructs & and ⊕, “offer” and “choose”, are
also represented as individual structs. The Offer struct is declared
as:

struct Offer<P, Q>(PhantomData<(P, Q)>)

and reflects the (passive) choice between protocols P and Q. The
Choose struct is declared similarly. Contrary to the original session
types definition our implementation only provides binary branch-
ing, like the Haskell implementation in [1]. We have considered al-
ternative ways to implement labelled branching, but so far we have
not discovered a satisfactory solution.

Recursion is denoted by the Rec and Var structs together with
Peano number structs Z and S<N>. Contrary to the other session
type structs (except for Eps), Rec does not have a notion of a “next”
action. Rec is defined as:

struct Rec<P>(PhantomData<P>)

and contains a single protocol P. In Section 3.4 we explain how the
recursion structs are used.

The ATM As an example of how to declare session types using
our Rust representation, we show how the ATM protocol from
Section 2.2 can be expressed:

type Atm = Recv<Id, Choose<Rec<AtmInner>,
Eps>>;

type AtmInner = Offer<AtmDeposit,
Offer<AtmWithdraw,

Quit>>>;

where:

type Id = String;
type Quit = Eps;
type AtmDeposit = Recv<u64, Send<u64,

Var<Z>>>;
type AtmWithdraw = Recv<u64, Choose<Var<Z>,

Var<Z>>>;

There are a few things to note about this transcription: Because
our branching construct is binary, we chain Choose and Offer
constructs to provide several branches. We use type aliases to name
the different branches of AtmInner, which is useful for readability.
Note that for recursion, Var<Z> plays the role of t and refers to the
innermost occurrence of Rec.

3.2 Duality
We implement duality by using Rust’s trait system. Traits in Rust
are equivalent to interfaces in Java or, perhaps more closely, type
classes in Haskell, and are used to constrain generic type parame-
ters in functions. A trait defines a set of method signatures (option-
ally with default implementations) and associated types, that can
be implemented for different types in special impl blocks. Traits
with no methods are typically called “marker traits” and notable
examples in the standard library are the Send and Sync traits.

We declare a trait HasDual:

trait HasDual {
type Dual;

}

The HasDual trait does not require any methods to be imple-
mented, instead it requires implementors to specify an associated
type, Dual. For types that are their own dual, such as Eps, the im-
plementation is straight-forward:

impl HasDual for Eps {
type Dual = Eps;

}

For a type like Send, the dual implementation is defined induc-
tively. For Send<A, P> the following protocol P must also imple-
ment HasDual, which can be expressed by a trait bound on P. There
is no bound on the type A of the transmitted value, but the types
must be the same. The declaration is as follows:

impl<A, P: HasDual> HasDual for Send<A, P> {
type Dual = Recv<A, P::Dual>;

}

A mirrored implementation is required for Recv.
For the branching constructs, Offer and Choose we require

two subsequent protocols, call them P and Q, that also implement
HasDual:

impl<P: HasDual, Q: HasDual> HasDual
for Choose<P, Q> {

type Dual = Offer<P::Dual, Q::Dual>;
}

The implementation for Offer is analoguous.
Finally, Rec is its own dual and is defined as follows:

impl<P: HasDual> HasDual for Rec<P> {
type Dual = Rec<P::Dual>;

}

Rust’s type system is powerful enough to infer the correct types
in many cases and, as we shall see, once a declared protocol is asso-
ciated with a channel the user rarely has to specify any subsequent
protocol types. We can even obtain the dual of a declared protocol
without having to manually exchange Send and Recv, and Offer
and Choose. For example, we can obtain the dual of Atm as:

type Client = <Atm as HasDual>::Dual;

3.3 Session-typed Channels
So far we have only described session types as a DSL embedded
in Rust, and have not discussed how processes interact over a
session-typed connection. In [1] the communication channel is
passed in a monad, but this approach does not translate well to Rust,
because it requires chaining a lot of closures. The Rust compiler
currently does not optimize chains of closures well, which can
quickly lead to a stack overflow. Secondly, we found the monadic
approach with many closures in Rust to be unergonomic. Instead
we provide a Chan type which is used to facilitate all session-typed
communication in an idiomatic fashion.

The Chan type is defined as:

struct Chan<E, P> (
Sender<Box<u8>>,
Receiver<Box<u8>>,
PhantomData<(E, P)>

)

and contains both a Sender and Receiver to enable bi-directional
communication. The value types Box<u8> are placeholders for
(pointers to) the actual types transmitted. The P type parameter is
the session type protocol associated with the channel.

To transmit a value of some type A on a Chan, we use the
write_chan() function:

fn session_channel<P: HasDual>()
-> (Chan<(), P>, Chan<(), P::Dual>) {

let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let c1 = Chan(tx1, rx2, PhantomData);
let c2 = Chan(tx2, rx1, PhantomData);
(c1, c2)

}

Figure 5. Obtaining a session-typed channel

unsafe fn write_chan<A, E, P>
(&Chan(ref tx, _, _): &Chan<E, P>, x: A)
where A: marker::Send + ’static

{
let tx: &Sender<Box<A>> = transmute(tx);
tx.send(Box::new(x)).unwrap();

}

First, the Sender is borrowed from the Chan and the reference
transmuted to a boxed version of the type we want to transmit. The
Box type is a uniquely owned, heap-allocated pointer, and we use
it to ensure that all transmitted values have the same size. We then
box the value x (moving it to the heap) and transmit the pointer.

The corresponding read_chan() function looks as follows:

unsafe fn read_chan<A, E, P>
(&Chan(_, ref rx, _): &Chan<E, P>) -> A
where A: marker::Send + ’static

{
let rx: &Receiver<Box<A>> = transmute(rx);
*rx.recv().unwrap()

}

Like write_chan(), it transmutes a reference to the embedded
Receiver and receives and unwraps the boxed value. Obviously,
these operations are highly unsafe to use, so they are not exposed
by the library, but only used internally. In the next section we show
how they these unsafe methods are used in a safe way.

Channel types are created in pairs, using the
session channel() function. This function constructs two Chan
structs whose inner Senders and Receivers are connected, and
whose protocols are dual. Its declaration can be seen in Figure 5.
The PhantomData constructor infers the correct type from the
context, so the type of c1 is Chan<(), P> and the type of c2 is
Chan<(), P::Dual>.

The only thing left to explain is the E parameter. In short, it
is an environment associated with the channel used to implement
recursion. We discuss its usage in details in the following section.

3.4 Channel Interaction
Channel interactions are implemented as methods on the session
channel end-points. Each action is restricted to only work on chan-
nels where the next step in the protocol matches the action. As
an example, consider the implementation for send() in Figure 6.
The send() function is only implemented for channels of type
Chan<E, Send<A, P>>. That is, for channels whose next step in
the protocols is Send. Calling send() consumes the channel value
and returns a new channel of type Chan<E, P> where the Send
has been removed. Conceptually we are “taking a step” in the pro-
tocol. Rust’s move semantics ensures that it is only possible to call
send() at most once for a given Send channel.

We use the unsafe keyword here because sending untyped
values through a channel is clearly dangerous and Rust cannot
verify that it is safe. However, in the context of our session types,
we can guarantee that doing so will violate neither protocol nor

impl<E, P, A: marker::Send> Chan<E, Send<A, P>> {
fn send(self, x: A) -> Chan<E, P> {

unsafe {
write_chan(&self, x);
transmute(self)

}
}

}

Figure 6. Implementation of send()

impl<E, P, Q> Chan<E, Choose<P, Q>> {
fn sel1(self) -> Chan<E, P> {

unsafe {
write_chan(&self, true);
transmute(self)

}
}
fn sel2(self) -> Chan<E, Q> {

unsafe {
write_chan(&self, false);
transmute(self)

}
}

}

Figure 7. Implementation of sel1() and sel2()

memory safety. The write chan() method performs the actual
untyped send operation: It borrows the Sender field of the Chan,
transmutes it to a Sender<Box<A>> (to preserve the type) and
sends the given value. The corresponding recv() method calls
read chan() and receives the pointer of type Box<A>. It then
deconstructs the box (moving the value onto the stack) and returns
the value to the caller.

The branching constructs implicitly communicate the branch
choices. For a channel of type Chan<E, Choose<P, Q>> two
methods are implemented: sel1() and sel2(). The first method
selects the first branch (of type P) and returns a channel of type
Chan<E, P>. The second selects the branch Q. Calling either of
these transmits the decision through the channel as a boolean: true
when selecting the first branch and false for the second branch.
See Figure 7.

There is only one method for a channel of type Chan<E,
Offer<P, Q>> called offer() (see Figure 8). offer() returns a
Branch, which is akin to Haskell’s Either type and is defined as:

enum Branch<L, R> { Left(L), Right(R) }

The caller of offer() must subsequently match on the return type
to figure out which branch was selected and act accordingly.

The protocol environment E is used to implement recursion.
When a Rec<P> appears in a protocol, the user must call enter(),
which pushes the protocol P onto the protocol stack, to “enter”
the recursive environment in the protocol P. Thus, the environment
maintains a stack of the bodies of each enclosing Rec. The type
transformation is:

Chan<E, Rec<P>> −→ Chan<(P, E), P>

and is implemented by the enter() method.
To repeat a protocol in the stack, we use de Bruijn indices to

specify the index of the protocol. The Var<N> struct is provided
where N is the index in the stack. The indices are defined as Peano
numbers with the structs Z and S<N>. Thus, Var<Z> signals that
we should recurse into the protocol located at the top of the stack,

impl<E, P, Q> Chan<E, Offer<P, Q>> {
fn offer(self) -> Branch<Chan<E, P>,

Chan<E, Q>>
{

unsafe {
let b = read_chan(&self);
if b {

Branch::Left(transmute(self))
} else {

Branch::Right(transmute(self))
}

}
}

}

Figure 8. Implementation of offer()

and Var<S<Z>> indicates that we should pop the first element from
the stack (changing the type to Var<Z>) and then recurse into the
protocol left on top of the stack. The type transformations are as
follows:

Chan<(P, E), Var<Z>> −→ Chan<(P, E), P>

Chan<(P, E), Var<S<N>>> −→ Chan<E, Var<N>>

The zero() method implements the first transformation, replac-
ing the protocol Var<Z> by the protocol P located at the top of the
stack. The succ() method implements the second transformation,
removing the protocol from the top of the stack and decrementing
the Var<S<N>> counter to Var<N>. In both cases, the implementa-
tion is only available (i.e., they are typeable) for channel types with
a non-empty protocol stack.

The functions enter(), zero() and succ() only tranform the
protocol type of the channel, they do not send or receive any values.
In other words, their implementations only serve to advance the
protocol and their method bodies all have the form:

unsafe { transmute(self) }

4. Example: ATM Implementation
To illustrate how to work with session-typed channels, in this sec-
tion we present an implementation of an ATM program that uses
the Atm protocol. We also present client programs that interact with
the ATM.

4.1 ATM
Our ATM implementation is a function atm() that accepts a chan-
nel with the Atm protocol. When the function receives the channel,
the session is already initiated, meaning the client is already con-
nected and ready to interact. The ATM then handles the client’s
requests in accordance with the protocol. The function is shown in
Figure 9.

The provided channel c has type Chan<(), Atm>, which is the
type we defined in Section 3.1. The first interaction is to receive the
ID provided by the client. Calling recv() consumes the channel,
and we obtain a tuple containing the new channel with the Recv
part removed and the ID. For all channel interactions, it is necessary
to recapture the channel value because the method call consumes
the channel (it is moved out of the calling scope). This pattern lends
itself to chaining method calls such as:

c.sel2().close();

avoiding the need to rebind the Chan<(), Eps> channel only to
call close() immediately.

To iterate, we declare a mutable channel value with:

fn atm(c: Chan<(), Atm>) {
let (c, id) = c.recv();
if !approved(id) {

c.sel2().close();
return;

}
let mut c = c.sel1().enter();
loop {

c = match c.offer() {
Left(c) => {

let (c, amt) = c.recv();
// update balance
c.send(new_balance).zero()

}
Right(c) => match c.offer() {

Left(c) => {
let (c, amt) = c.recv();
if balance >= amt {

// adjust balance
c.sel1().zero()

} else {
c.sel2().zero()

}
}
Right(c) => {

c.close();
break;

}
}

}
}

}

Figure 9. An ATM function

c = offer! {
c,
Deposit => {

// Update balance
},
Withdraw => {

// Update balance if possible
},
Quit => {

// Quit
}

}

Figure 10. Using offer! for the loop body of atm

let mut c = c.sel1().enter();

which has the type Chan<(AtmInner, ()), AtmInner>. In a
loop, we then interact according to the AtmInner protocol and re-
assign c whenever we reach Var<Z>. We only break out of the loop
when the user selects the Quit branch.

The interaction with the chain of Offers is a little verbose be-
cause we must match for each occurrence of Offer. We introduced
a small syntax extension, via a macro, to Rust called offer! that
allows chained Offer constructs to be matched more succinctly.
The loop body could then look as in Figure 10. The labels in
offer! only provide a useful label for the programmer, they do
not carry any semantic meaning. In particular, it is not possible to

fn client_deposit(c: Chan<(), Client>) {
let c = match c.send(id).offer() {

Left(c) => c.enter(),
Right(c) => { c.close(); return }

};

let (c, new_bal) = c.sel1().send(100).recv();
println!("new balance: {}", new_bal);

c.zero().sel2().sel2().close();
}

Figure 11. A client depositing an amount

reorder the branches, as they are closely tied to the structure of the
chained match statements from Figure 9.

4.2 ATM Clients
We also want to show how to implement client programs for the
ATM example. We first declare type aliases for the protocol and
the inner part of the recursion:

type Client = <Atm as HasDual>::Dual;
type ClientInner = <AtmInner as HasDual>::Dual;

Our first client program simply wants to deposit an amount to
her account and then exit. The client program is shown in Figure 11.

The first action is to send an ID. When the client sends her
ID, she must take into account that the ID may not be recognized,
which is handled by a call to offer(). In case the client is not
approved, the only possible action is then to close the channel.

Next, the client selects the AtmDeposit branch and sends the
amount. After a deposit, the ATM sends the updated balance, which
the client then prints. The resulting channel after recv() is then:

Chan<(ClientInner, ()), Var<Z>>

so to repeat the ClientInner protocol we call zero().
After printing the updated balance, the client wants to close the

connection, which can be done from a channel of type

Chan<(ClientInner, ()), ClientInner>

by two calls to sel2() and then close(). Note that the structure of
the protocol can result in long chains of method calls to navigate the
protocol. This is shown in the last statetement of client_deposit
(in Figure 11), where the session is closed:

c.zero().sel2().sel2().close();

Our second client attempts to withdraw an amount from her
account. In case the withdraw would result in an overdraft, the
client instead deposits another amount. See Figure 12.

4.3 Extending the ATM
Suppose we wanted to add another branch to the Atm protocol.
For example, we could add a branch AtmBalance that returns the
current balance to the client. We define AtmBalance as:

type AtmBalance = Send<u64, Var<Z>>;

and modify AtmInner to include it:

type AtmInner = Offer<AtmDeposit,
Offer<AtmWithdraw,
Offer<AtmBalance,

Quit>>>;

Now, our ATM and client implementations need to be modified
to take this new branch into account. For the existing clients, the

fn client_withdraw(c: Chan<(), Client>) {
let c = match c.send(id).offer() {

Left(c) => c.enter(),
Right(c) => { c.close(); return }

};
let c = match c.sel2().sel1()

.send(200).offer() {
Left(c) => {

println!("Withdraw OK");
c.zero()

}
Right(c) => {

println!("Overdraft!");
let c = c.zero();
c.sel1().send(50).recv().0.zero()

}
};
c.sel2().sel2().close();

}

Figure 12. A client withdrawing an amount

c = offer! {
c,
Deposit => { ... },
Withdraw => { ... },
Balance => {

c.send(balance).zero()
},
Quit => { ... }

}

Figure 13. The body of the atm() loop with the added Balance
branch

modifications are minimal in that they only need to select the
correct branch for exiting. The deposit_client, for example,
would update its last statement to:

c.zero().sel2().sel2().sel2().close();

to select the Quit branch. We have introduced convenience meth-
ods to allow skipping through a list of Choose. To call sel2()
three times we could instead use skip3():

c.zero().skip3().close();

This also demonstrates a limitation in our binary branching con-
structs: Extending a protocol might require users to take into ac-
count parts of the protocol that they are not interested in. We dis-
cuss this further in Section 6.4

The atm() function must also be updated to handle the new
branch. If we use the offer! macro (as shown in Figure 10), we
can simply add the branch in the right place. See Figure 13. As
mentioned earlier, the order of the branches matter, so we must
add the Balance branch in betweeen Withdraw and Quit. Session
channel interactions must adhere to the structure of the protocol,
and even the slightest mistake, like omitting a call to offer()
results in type errors.

During the course of our work, we have implemented a number
of examples from the literature, including an arithmetic server [8],
a polygon clipping algorithm [1], and a ticket-ordering system [7].
Our experience so far is, that it is simplest to declare the protocol
type upfront and then write the implementation afterwards. This
way, the type system aids the user in writing correct programs that
does not violate their protocol.

pub enum Msg {
PaintInit(Arc<StackingContext>),
Paint(Vec<PaintRequest>),
UnusedBuffer(Vec<Box<LayerBuffer>>),
PaintPermissionGranted,
PaintPermissionRevoked,
Exit(Option<Sender<()>>, PipelineExitType)

}

Figure 14. The Msg type for paint task

5. Example: Use in Servo
This section gives a brief introduction to Servo and the concurrency
problems we attempt to address with our session types library. We
describe the internal communication patterns employed in Servo
and how to transform these patterns into session-typed communi-
cation.

Servo is a new experimental browser engine developed by
Mozilla designed to take advantage of the now ubiquitous multi-
core architectures. Existing browser engines showcase excellent
sequential performance on web page rendering, but they are not
designed to take advantage of multi-core architectures. In Servo,
tasks that are traditionally executed sequentially are concurrent,
and some of the novel features are concurrent DOM traversal, as
well as concurrent layout painting and JavaScript execution.

The Servo project has experienced problems with orchestrating
its running tasks, and we sought to address this class of problems
using session types. Shutting down in a structured way has proved
to be challenging in particular.

In Servo, a task typically listens on one port (a Receiver)
for incoming messages with the message types defined by an
enum, the Rust equivalent of tagged unions. Our working exam-
ple task is the paint task from the Servo pipeline. It receives mes-
sages of type Msg as defined in Figure 14. We found that there
are three tasks that send messages to the paint task: The com-
positor, the constellation and the layout task. We will not discuss
these tasks in detail, but refer the reader to [10]. We further found
that each variant of the Msg enum is only sent by one of these
three tasks—except for Exit. The division is as follows: The
compositor sends Paint and UnusedBuffer, the constellation
sends PaintPermissionGranted, PaintPermissionRevoked
and Exit and the layout task sends PaintInit and also Exit.

We replace the paint task’s single channel with three session-
typed channels: one for each of the tasks that communicate with
it. The variants of the Msg can be directly translated to session
type “fragments”. Variants that contain data are translated to a
Recv followed by Var<Z>. For example, the PaintInit variant
is translated to:

Recv<Arc<StackingContext>, Var<Z>>

Variants that do not carry any data, like PaintPermissionGranted
and PaintPermissionRevoked are translated to Var<Z>. We de-
fer the discussion of Exit for now.

The protocol between the compositor and paint task then looks
as follows (from the point of view of the paint task):

type Compositor = Rec<
Offer<Recv<Vec<PaintRequest>, Var<Z>>,
Offer<Recv<Vec<Box<LayerBuffer>>, Var<Z>>,

Eps>>>;

That is, the compositor has a choice between three branches.
The first two each correspond to a variant of the Msg type: the
first branch corresponds to the Paint message, the second to
UnusedBuffer. We also include a “quit” branch because we want

to enforce the principle that all session-typed channels are eventu-
ally closed.

The shutdown sequence in Servo is elaborate and has roughly
two modes: Either the entire application is shutting down or a single
pipeline is being shut down. A “pipeline” in Servo comprises a
script task, a layout task and a paint task; a new pipeline is initiated
for each page load.

When shutting down a single pipeline, the paint task must col-
lect all outstanding buffers from the compositor before exiting, that
is, it waits for UnusedBuffer messages and does not exit before
all buffers have been returned. The paint task signals on a special
port that it has shut down to allow the constellation to wait for it.
In a complete shutdown, all outstanding buffers are leaked. This is
assumed safe because the memory allocated by the application will
be collected by the underlying operating system.

Handling the shutdown sequence with session-typed channels
makes this pattern explicit. The channel between the constellation
and the paint task has the following branch (from the point of view
of the constellation):

Choose<Eps, Recv<(), Eps>>

In a complete shutdown, the constellation chooses the first branch,
closing the connection outright. In a pipeline-only shutdown the
second branch is chosen allowing the constellation to wait for
acknowlegdment () (the unit type in Rust) that the paint task has
shut down.

The constellation protocol then looks as follows (again, from
the point of view of the paint task):

type PaintPermissionGranted = Var<Z>;
type PaintPermissionRevoked = Var<Z>;
type Exit = Choose<Eps, Send<(), Eps>>;

type Constellation = Rec<
Offer<PaintPermissionGranted,
Offer<PaintPermissionRevoked,

Exit>>>;

Where we use type aliases to make it more apparent to the casual
reader what each branch is.

One of the challenges in Servo is to prevent tasks from dropping
connections. We aim to run protocols to completion because it
minimizes the risk of crashes. This forced us to rewrite parts of
the compositor because it would drop all its paint task connections
during a complete shutdown. We changed it to have the compositor
close all its connections before exiting. Another challenge we faced
in Servo was that the paint task channel (the Sender) could be
cloned multiple times to be shared with the compositor, and we had
to rewrite parts of Servo’s pipeline handing to ensure that existing
connections between a paint task and the compositor were reused.

In summary, we have managed to translate some of Servo’s in-
ternal communication patterns to use session types, making the in-
herent protocols more explicit and systematic. The work is avail-
able on GitHub4.

6. Discussion
6.1 Performance
Protocol safety is checked at compile time, thus the only direct
overhead is in branches (transmission of an additional log(n)
boolean values for n different protocols) because of the additional
boxing during send and receive, and from small wrapper functions
like send(), which could be inlined by the compiler. The overhead
from boxing could be removed by writing our own specialized

4 https://github.com/laumann/servo/tree/session-types

https://github.com/laumann/servo/tree/session-types

implementation of untyped channels, while the extra transmission
of boolean values is harder to fix without a different approach to
branching.

However, like with all static type disciplines, the point of the
type system is to disallow certain programs, and some of these
programs could be correct and well performing. Thus, it might be
that the library imposes an indirect overhead.

6.2 Safety
We are trying to achieve the static guarantee that two processes are
compatible “in the sense that an interaction between the two will
not terminate prematurely because of a mismatch in the expecta-
tions of one of the partners” [9].

We will not give a formal proof for our claims, partly because
Rust has no formal specification, but we will argue for our claims
in terms of Rust’s informal semantics. We focus on our library-
provided methods and functions, treating session-types as an
embedded DSL for dealing with sessions. Later we discuss what
effect certain Rust functions, like drop(), has on our claims.

It is important to note that we are arguing from safe Rust code.
Rust, as a systems programming language, gives you the foot-
gun, but it is clearly labelled unsafe. In safe Rust we are guaran-
teed freedom from dangling pointers, invalid pointer dereferencing,
double frees and other similar problems. In unsafe Rust such errors
can still be created, and we have already seen the transmute()
function for type coercion. The only restriction on transmuting a
value from one type to another is that the sizes must match. But it
allows you to, for example, re-interpret an array of four bytes as a
32-bit number:

let a: [u8; 4] = [0u8, 0u8, 0u8, 0u8];
let n: u32 = unsafe {

transmute::<[u8; 4], u32>(a)
};

All our protocols are zero-sized phantom types, and we cannot pre-
vent the user from transmuting an obtained Chan value to specify
some other (potentially incompatible) protocol. But this cannot be
done without marking the operation as unsafe. For the same rea-
son, the HasDual trait is marked unsafe: We cannot prevent users
from implementing HasDual for custom data types, but we can in-
dicate that doing so potentially violates protocol safety.

To argue safety, we demonstrate that for any two processes
communicating over a session-typed channel with end-points c1
and c2, the associated session types P1 and P2 are compatible (i.e.,
they are dual).

The only way to obtain a a Chan value is through the
session_channel() function, which returns two Chan end-
points of a new session-typed channel. The restriction on the type
parameter P is that it must implement HasDual. Thus, upon session
initialization, the protocols P1 and P2 of the channel end-points are
dual.

We sketch an inductive proof on the structure of the session
types DSL, arguing that any typeable protocol P1 for a channel
c1 has a corresponding, unique dual P2 that is the protocol type of
the other channel end-point c2. Our base case is Eps:

Eps P1 = Eps. By definition P2 = Eps.

We must then argue that any interaction on a session-typed channel
cannot violate protocol safety, in other words, we cannot arrive at
a state where the protocols are not dual. We argue in terms of the
methods that transmit values over the internal channels, which are
send(), sel1() and sel2().

send() Assume P and Q are dual protocol types and A is any type.
Let P1 = Send<A, P>. By definition P2 = Recv<A, Q>. The
only interaction available on c1 is send() which consumes the

channel, transmits a provided value of type A and yields a new
channel c′1 with protocol type P. The only operation available
on c2 is recv() which consumes c2, receives a value of type A
and returns a tuple containing a new channel c′2 and the received
value. The protocol type of c′2 is Q.

sel1() Assume P and R are dual, and Q and S are dual. Let P1

= Choose<P, Q>. By definition P2 = Offer<R, S>. Calling
sel1() on c1 transmits the boolean value true, consumes c1
and yields c′1 with protocol P ′

1 = P. The only method available
on c2 is offer(), which receives a boolean value. When true
is received c2 is consumed, yielding c′2 with protocol P ′

2 = R. c′2
is returned from offer() wrapped in an Ok value.

sel2() The argument for sel2() is the same as for sel1(),
except false is transmitted and the resulting protocol types are
P ′
1 = Q and P ′

2 = S, and offer() returns the new channel c′2
wrapped in an Err value.

For completeness we should also show that non-transmitting
methods, such as enter(), zero() and succ() cannot introduce
incompatible protocols. The proof sketch is similar, but we must
also take the protocol stack (the environment) into account.

6.3 Affine vs Linear Types
A challenge presented by the use of affine types is that we cannot
prevent a channel value from being dropped prematurely. We argue
that any interaction that takes place over a session-typed channel
is safe under the condition that none of the interacting parties
drop their channel prematurely. Linear types prevent this exact
problem and there are proposals to extend Rust with linear types,
but this work has at the time of writing been postponed.5 So we
have considered alternative ways to enforce linear usage of channel
values.

Currently, Rust supports an annotation on types and functions
called #[must_use], that signifies that a value of this type must be
used. By default, a compiler lint produces warnings on must_use
types when they are not used. The lint can also be instructed to
reject programs that do not use their values. As an example, the
Result type is a must_use type to hint to the programmer that the
result of a function that might produce errors should not be ignored
(i.e., you should handle error situations). However, #[must_use]
is not quite sufficient for our purposes, as it is easy to accidentally
and purposely bypass.

The Rust compiler exposes an extensive plugin architecture and
in collaboration with Manish Goregaokar we have developed a
compiler plugin, humpty_dumpty, which provides a lint that en-
sures that types annotated with #[drop_protect] are used lin-
early.6 These values cannot be dropped except by functions explic-
itly annotated with #[allow_drop]. It is still a work in progress,
which by no means guarantees linearity in all cases, but it provides
better security than #[must_use].

6.4 Binary vs Labelled Branches
Although we can express the same protocols using binary branches
as we can with labelled, multi-way branches, binary branches are
less flexible and more cumbersome to work with. When using bi-
nary branches, the ordering of the branches in an Offer matters:
Changing the order of the branches in one side of the session type
requires making similar changes to the other side as well. In con-
trast, the branches in a labelled branching construct can be freely
moved around because the order does not matter. Additionally, the
labels themselves makes the session types easier to read and rea-
son about: Any user seeing a branch labelled Quit will have a

5 https://github.com/rust-lang/rfcs/pull/776
6 https://github.com/Manishearth/humpty_dumpty

https://github.com/rust-lang/rfcs/pull/776
https://github.com/Manishearth/humpty_dumpty

pretty good idea what the branch is supposed to do. Finally, us-
ing binary branches means that you have to nest branches in or-
der to express choices between more than two options. Multi-way
branching, which most implementations of labelled branches sup-
port, means that you can have an arbitrary number of choices in
each branch.

We chose to use binary branches for practical reasons. Although
most users would probably find labelled branches superior to binary
branches, we have not found a good way to implement them in Rust
without resorting to language extensions or the like. Instead, we
opted to make working with binary branches more convenient by
introducing the offer! macro and the skip functions.

Some implementations of session types using labelled branch-
ing also support a sophisticated kind of subtyping where a choice
(⊕) with labels L = l1, l2, . . . , ln is the dual of an offer (&) with
labels L′ = l′1, l

′
2, . . . , l

′
n as long as L is a subset of L′. This means

that you can update the offer with new branches without altering
the choice. This is a helpful feature, which makes labelled branches
very flexible to work with.

Our library also supports a kind of subtyping. For instance, if
a client is using only one part of a binary branch, it can ignore
the other part and replace its type with a type parameter. By doing
so, we can change the other part of the branch on the server side
without changing the client side at all. For example, consider the
following functions:

fn server(c: Chan<(), Offer<Recv<u8, Eps>,
Recv<i8, Eps>>>)

{
...

}

fn client<P>(c: Chan<(), Choose<Send<u8, Eps>,
P>>)

{
c.sel1().send(42u8).close();

}

Here, the session types in client and server are dual, even
though we have used a type parameter in the session type for
client. However, we can only do this if client never uses the
other branch of the Choose, as the case is here. Like subtyping
in labelled branches, this allows for more flexibility, and makes
it easier to write several clients that talk to the same server, for
example.

Although binary branches are somewhat limited compared to
labelled branches, we feel that we have found a good compromise.
The current implementation is simple, easy to understand, and
although it is limited to binary branches, it is no less powerful in
terms of possible interaction patterns. We will continue to consider
ways to further improve our binary branches, or even implement
labelled branching, but we are convinced that the current library is
easy to use and understand for most users.

7. Related Work
The syntactical constructs provided in our session types library are
a direct translation of the constructs presented in [1].

The idea of associating the protocol with a channel value was
inspired by the SessionJ language that implements session types as
an extension to Java [7].

8. Conclusion
We have demonstrated that session types can be implemented di-
rectly in a language supporting affine types, and argued for its
safety. Like linear types, affine types prevent aliasing, but, unlike
linear types, fail to promise progress.

We have developed a library that is available on GitHub7 and
shown it is practically usable, through both examples and inclusion
in real-world applications.

Acknowledgments
Thanks to Lars Bergstrom and Manish Goregaokar who have pro-
vided lots of feedback on the work presented here.

References
[1] Riccardo Pucella and Jesse A. Tov. Haskell Session Types with

(Almost) No Class. SIGPLAN Not.,44(2):25–36, September 2008
[2] Kaku Takeuchi, Kohei Honda and Makoto Kubo. An Interaction-

based Language and its Typing System. In PARLE ’94: Proceedings
of the 6th International PARLE Conference on Parallel Architectures
and Languages Europe, pages 398–413, London, UK, 1994. Springer-
Verlag.

[3] Kohei Honda, Vasco Thudichum Vasconcelos and Makoto Kubo. Lan-
guage Primitives and Type Discipline for Structured Communication-
Based Programming. In Proceedings of the 7th European Symposium
on Programming: Programming Languages and Systems, pages 122–
138, London, UK, 1998. Springer-Verlag.

[4] The Rust Programming Language.
http://doc.rust-lang.org/book

[5] The Rust Reference.
http://doc.rust-lang.org/reference.html

[6] Eric Reed. Patina: A Formalization of the Rust Programming
Language.
ftp://ftp.cs.washington.edu/tr/2015/03/
UW-CSE-15-03-02.pdf, February 2015.

[7] Raymond Hu, Nobuko Yoshida and Kohei Honda. Session-Based
Distributed Programming in Java. In ECOOP 2008 Object-Oriented
Programming, volume 5142 of Lecture Notes in Computer Science,
pages 516-541, Springer Berlin Heidelberg, 2008.

[8] Simon Gay and Malcolm Hole. Types and Subtypes for Client-Server
Interactions. In Swierstra, S.Doaitse, Programming Languages and
Systems, volume 1576 of Lecture Notes in Computer Science, pages
74–90. Springer Berline Heidelberg, 1999.

[9] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for
asynchronous session types. Journal of Functional Programming,
20(01):1950, 2010.

[10] Philip Munksgaard and Thomas Bracht Laumann Jespersen. Practical
Session Types in Rust. Master’s thesis, Department of Computer
Science, University of Copenhagen, June 2015.

7 http://github.com/Munksgaard/session-types

http://github.com/Munksgaard/session-types

	Introduction
	Background
	Rust
	Session Types

	Session Types in Rust
	Type Constructs
	Duality
	Session-typed Channels
	Channel Interaction

	Example: ATM Implementation
	ATM
	ATM Clients
	Extending the ATM

	Example: Use in Servo
	Discussion
	Performance
	Safety
	Affine vs Linear Types
	Binary vs Labelled Branches

	Related Work
	Conclusion

