

U N I V E R S I T Y O F C O P E N H A G E N

Supervisor: Ken Friis Larsen

Practical Session Types in Rust
Developing safe communication protocols for real-world applications

Philip Munksgaard
pmunksgaard@gmail.com

Thomas Bracht Laumann Jespersen
ntl316@alumni.ku.dk

June 2015

2

Abstract

We provide an implementation of session types in Rust and demonstrate how to incor-
porate session-typed channels in the Servo browser engine to guarantee protocol safety
among concurrent, communicating threads. Session types provide a protocol abstraction,
expanding on traditional typed communication channels, to ensure communication takes
place according to a specified protocol.

Existing browser engines are over a decade old and unfit for modern computer ar-
chitectures, where parallelism and energy efficiency are prioritized over raw power. To
take advantage of modern computing platforms Mozilla Research is developing Servo,
a next-generation rendering engine. Servo is implemented in Rust, a new systems pro-
gramming language that provides memory-safety and simple concurrency mechanisms,
while retaining the speed of C or C++, all of which is essential to Servo.

We present and discuss the overall design of Servo and its internal communication
patterns and demonstrate how the design can lead to discrepancies in communication
expectations and potentially result in errors. The communication patterns employed in
Servo are defined in an ad-hoc manner without any imposed overall structure. The ad-
hoc communication patterns make it difficult to reason about communication flow and
it is therefore hard to make assertions concerning safety and deadlock-freedom.

To address these issues, we design and implement a session type library in Rust called
session-types, and discuss practical use cases through examples and demonstrate how
they may be used in a large-scale application. Specifically, we replace parts of Servo’s in-
ternal communication infrastructure with session-typed channels, and demonstrate that
the use of session types allows us to provide compile-time guarantees, without incurring
any significant run-time penalties. We also discuss challenges and drawbacks we dis-
covered when using session-typed communication in a large real-world application. Our
work is publicly available as a fork of the Servo project and we are currently seeking to
land these changes in Servo.

While developing session-types, we have also developed several examples and ex-
amined different use cases for session-types. Among these are a solution to the Santa
Claus problem first described in [1], an implementation of the recursive arithmetic server
described in [2], as well as many others. Along with our continual examination of the com-
munication patterns in Servo, these examples and case studies have guided us towards a
practical and usable library design that enforces a strict communication discipline, while
still allowing many useful communication patterns.

We draw inspiration from implementations of session types in other languages, while
taking advantage of some of the unique features of Rust, to provide a practical, usable
library that provides static guarantees about communication correctness. Our results
show how session-typed communication, while requiring more careful implementation by
the user, helps to enforce sound communication patterns that are less error-prone, a
property of particular importance to large-scale, massively concurrent applications. The
implementation also serves to demonstrate how a library for session-typed channels can
be directly implemented in a polymorphic language that supports affine types, without
having to worry about aliasing.

Finally, we consider the limitations of our session type design, which relies on the
affine types of Rust. In an attempt to address the biggest limitation—channel end-points
may be voluntarily or involuntarily dropped at any time—we implement a compiler plugin
for Rust called humpty_dumpty, which attempts to enable the user to track linearity of
specially annotated types.

Our contributions are: a library implementation of session types that relies on affine
types, the humpty_dumpty plugin for the Rust compiler, which enables the user to track
linear types, a fork of the Servo browser engine which incorporates session-typed channels
as part of the internal communication schemes, contributions to both the Rust and Servo
projects, and a paper submission currently in review about our work to the 11th ACM
SIGPLAN Workshop on Generic Programming (WGP 2015).1

1http://www.wgp-sigplan.org/2015

CONTENTS 3

Contents

Abstract 2

1 Introduction 7

2 Rust, a Memory-Safe Language 9
2.1 Ownership and Move Semantics . 10
2.2 Structures . 11
2.3 Traits . 12

2.3.1 Associated Types . 13
2.4 Concurrency . 14
2.5 Unsafe Code . 15

3 Servo, a Concurrent Browser 17
3.1 Servo and its Architecture . 17
3.2 Communication Patterns . 18
3.3 The Shutdown Sequence . 20

3.3.1 An Example of Communication Inconsistency 21
3.4 Finding a Solution . 22

4 Session Types 24
4.1 The Honda-Vasconcelos-Kubo Session Typing System 24
4.2 Type System . 26
4.3 Session Types in Haskell . 28
4.4 Session Types in Object-Oriented Programming 31

5 Session Types in Rust 33
5.1 Design . 33
5.2 Implementation . 33
5.3 Safety . 40
5.4 Examples and Extensions . 42

5.4.1 Selecting Over Multiple Channels . 42
5.4.2 Selecting Among Multiple Branches 44
5.4.3 An Unknown Number of Clients . 45
5.4.4 The Santa Claus Problem . 46

5.5 Monadic Session Types . 50
5.6 Alternative Designs . 51
5.7 Evaluation . 52

6 Session Types in Servo 53
6.1 The PaintTask . 53
6.2 Challenges in Servo . 57
6.3 The StorageTask . 58
6.4 Experience . 60

7 Linear Types in Rust 61
7.1 Design and Implementation of humpty_dumpty 62
7.2 Limitations in humpty_dumpty . 64
7.3 Evaluating humpty_dumpty . 65

CONTENTS 4

8 Evaluation 67
8.1 Performance . 67

8.1.1 The Cost of Boxing . 68
8.1.2 Performance in Servo . 68

8.2 Related Work . 69
8.3 Future Work . 70

8.3.1 Improving the Type System . 70
8.3.2 Improvements in session-types . 71
8.3.3 Rewriting Servo . 71
8.3.4 Improving humpty_dumpty . 71

8.4 Conclusion . 71

Acknowledgments 73

A The session-types Library 77

LIST OF FIGURES 5

List of Figures

1 The shutdown sequence for a pipeline for a complete shutdown. ack messages
are “acknowledgment” messages of type (). 20

2 Syntax of L. 25
3 The syntax of types in L. 27
4 The co-type (or dual) of a type α is denoted α. 27
5 Communication with PaintTask. 54

List of Tables

1 Numbers obtained from microbenchmark. All numbers are in microseconds (µs). 68
2 Duration of time from start-up until shutdown (including idle time) with

standard deviation and difference of mean values. The difference is given as
µsession-types − µmaster. All numbers are in milliseconds (ms). 69

List of Listings

1 Hello World and the factorial function in Rust. 9
2 Examples of owning and borrowed function arguments. 10
3 Example of a struct declaration and method implementation. 11
4 The function optionify takes a generic argument and wraps it in an Option

container. 12
5 Trait declaration, implementation and usage. 12
6 Using where clauses. 13
7 Example use of where not possible with regular trait bounds. 13
8 A graph defined as a trait. 13
9 A graph trait using associated types. 14
10 The Add trait. 14
11 A struct which has interior mutability. 15
12 Unsafe function declaration. 15
13 Interpreting an array of four bytes as a 32-bit integer. 16
14 Initiating a page load. 18
15 The ResourceTask and its message API. 19
16 Handling control messages in ResourceManager. 19
17 The two-step shutdown logic for the layout task. 21
18 The force_exit method on pipelines. 22
19 Haskell data types for encoding session types. 28
20 Haskell implementations of the Session and Cap types, as well as close, send,

offer, enter, zero and suc. 29
21 The definition of the Indexed Monad. 29
22 Haskell definition of Dual plus its instance implementation for :!:. 30
23 Haskell implementations of Rendezvous, newRendezvous, accept, and request. . . 30
24 Protocol declaration in SessionJ. 31
25 Rust structs used to represent session types. 34
26 The HasDual trait and impls. 35
27 Our previous approach for handling duality using tupled type parameters. . . 36
28 The accept function to initiate a session. 36
29 Rust implementations of close, send, and recv. 37
30 An alternative Rust implementation of recv. 37
31 The Rust implementation of a session channel. 37

LIST OF LISTINGS 6

32 Implementations of unsafe_write_chan and unsafe_read_chan. 38
33 Rust implementations of offer, sel1, and sel2. 38
34 Rust implementations of enter, zero, and succ. 40
35 Rust implementations of session_channel. 40
36 Demonstrating send, recv and session_channel. 41
37 The ChanSelect structure. 43
38 Adding a channel to the selection structure. 43
39 Handling the Srv protocol. 45
40 Using the offer! macro. 45
41 The Server and Client types, as well as the implementation of the client and

handler function. 46
42 Using a Sender to connect an arbitrary number of sessions to a server. 47
43 A working elf. 48
44 Edna handling elves. 49
45 Santa Claus handling elves and reindeer. 49
46 Sample functions and declarations (Session, Cap, send, ret, and bind) from the

monadic Rust implementation of session types. 50
47 An implementation of the arithmetic server using the monadic implementation

of session types in Rust. 51
48 The paint task Msg enum type. 53
49 Three protocols for communicating with the paint task. 54
50 Extending the pipeline protocol. 55
51 Encoding a restriction on the number of times the CompositorChan branch can

be executed. 55
52 The paint task’s run method. 56
53 Sending ack to the pipeline at the correct time. 58
54 The storage task protocol. 59
55 A program using session-types that compiles, but panics when run. 61
56 A non-linear usage of the match statement. 62
57 An example showing usage of return in a match statement. 63
58 An example of a loop statement with protected values. 64
59 A non-linear loop. 64
60 A closure that captures and correctly closes a protected value. 65
61 A generic function, dropper, which can currently be used to drop protected

values without complaints from humpty_dumpty. 65

1 INTRODUCTION 7

1 Introduction

Since the first web browser was created in 1990 a lot has changed in the online world. A
multitude of browsers have seen the light of day, some for a short time, others are still around
to this day.

The most well-known browsers—Internet Explorer, Firefox, Chrome, Safari and Opera—
all have long development histories, and this is particurlarly true of their core rendering
engines. IE’s Trident was initially released as part of IE 4.0 in 1997, the Gecko engine used
by Firefox was introduced in 1998, WebKit, which was pioneered by the Konqueror browser
but also used in both Safari and Chrome, was introduced in 2000, and, lastly, Opera’s Presto
engine was introduced in 2003, although it is now discontinued in favour of WebKit [3, 4, 5,
6, 7]. For a graphical timeline of browser history see [8, 9].

All the major browsers use rendering engines whose initial development began at a time
where uni-processor computers were the default, but the hardware has changed dramatically
in the past decade. In particular, the number of cores and processing units in PCs have
increased dramatically and multi-core processors have become ubiquitous. Smart phones and
other mobile devices are common-place too, and they also favor multiple processors, because
using multiple but less powerful processors have been found to contribute to improved battery
usage, given proper utilization.

A substantial effort has been (and is still being) put towards developing new tools and
methods to program concurrent software, but it is a daunting task to adapt existing software
from single-threaded to multi-threaded execution, especially large software projects such as a
rendering engine. Additionally, all the aforementioned rendering engines are implemented in
C++, a language not initially designed with multi-threaded programming in mind. Instead,
support for multi-threaded programming in C++ has been added later through libraries. The
result is, that although you can use concurrency in C++, the language itself offers very little
help, and it is easy to create data races and the like.

A browser is a complex piece of software that requires precise memory control and good
overall performance, so at the time, choosing C++ made sense. However, manual memory
management requires the programmer to keep track of all allocated memory and release it
as appropriate. This is a well-known source of errors such as buffer overruns, use-after-free
and double-free, which constitute potential security vulnerabilities

Mozilla has decided to develop a new browser engine called Servo, with the stated goal of
utilising multi-core architectures to the fullest and eliminating security vulnerabilities due to
memory corruption. The safety requirement could be achieved by using a garbage-collected
language, such as Haskell or D, but, as noted earlier, the need for precise memory control does
not permit the use of a garbage-collected language. Instead Mozilla has opted to implement
Servo in Rust, a new systems programming language also developed by Mozilla.

Rust is a systems programming language that uses the LLVM back-end to produce highly
optimized executables. Rust is memory-safe by default, i.e. it disallows any kind of code
that may result in memory corruption. It also supports affine types and message-passing
primitives, the latter of which are implemented in the standard library, but take advantage
of Rust’s sophisticated type system in order to provide security from data races. Section 2
gives an introduction to Rust.

The memory safety combined with easy-to-use concurrency primitives enables the devel-
opers to structure the rendering engine in a way that maximizes parallel execution. Some of
the novel features of Servo include concurrent DOM traversal, and concurrent layout painting
and JavaScript execution.

Rendering a single web page spawns a number of threads working in cohesion to render the
result as fast as possible. The various tasks involved in rendering a web page lend themselves
somewhat naturally to concurrent implementation, for example, fetching resources, parsing
HTML and CSS, decoding images and caching fetched resources. Other tasks are not so

1 INTRODUCTION 8

straightforward to parallelize, such as the interaction between the DOM and JavaScript
execution. Additionally, an HTML parser must be re-entrant, because inlined JavaScript
may alter the DOM in various ways.

One of the challenges in the development of Servo is orchestrating the large number of
interacting threads. Traditional message-passing is simple to use, but can lead to errors
caused by miscommunication and Servo has experienced various problems with concurrency
control such as deadlocks or miscommunication resulting in crashes. Crashes caused by
miscommunication has proved to be a recurring problem and the development team has
expressed an interest in tackling this problem in a structured way.

The current structure in communication makes it hard to get an overview of the commu-
nication patterns and the flow of information is not obvious. In terms of process management,
there is a lack of clear division of responsibility and as a result Servo’s shutdown sequence has
proved to be problematic. The shutdown sequence is elaborate, because there are different
modes of operation depending on whether the entire application or just a part of it is being
shut down.

This dissertation will study the communication patterns in Servo and outline our require-
ments for a solution to the problems that we encounter, and it will examine the possibilities for
implementing session-typed channels in a polymorphic programming language that supports
affine types. Our working hypothesis is:

Session types can be implemented directly in a polymorphic programming lan-
guage that supports affine types. Additionally, we can port a large-scale applica-
tion, Servo, to a communication scheme based on session types, providing addi-
tional safety guarantees without incurring significant performance overhead.

The structure of the dissertation is as follows: Section 2 gives an introduction to the
Rust programming language with a focus on the features of the language that we will be
using. Section 3 describes the overall architecture of Servo and details its internal communi-
cation patterns, outlines problems in the current approach and establishes a list of properties
we would like in a solution. Section 4 explains session types in detail and Section 5 presents
our implementation of session types in Rust, namely the session-types library. We also
study some example use cases and implement additional useful infrastructure that makes it
easier to work with session-typed channels in a practical setting. Section 6 details our ap-
proach to introducing session-typed communication in Servo. Section 7 discusses limitations
in session-types and presents a compiler plugin, humpty_dumpty, which helps enforce lin-
ear usage of session-typed channels. Section 8 addresses performance concerns, assesses the
current implementation, discusses alternative solutions and related work, describes possible
avenues for future work, lists our contributions and summarizes our work.

2 RUST, A MEMORY-SAFE LANGUAGE 9

2 Rust, a Memory-Safe Language

This section gives an introduction to Rust. It is not meant to be a comprehensive tutorial,
but rather an introduction focusing on the features that are unique to Rust and those features
that will play a role in our work.

Rust is a systems programming language, initially developed independently by Graydon
Hoare before being adopted by Mozilla and developed on a larger scale. The main goals of
Rust are safety and speed. Safety in this context is understood to be memory safety.

Because it is aimed at being a systems programming language, Rust is designed to offer
a high level of control over low level details like memory allocation, so the programmer
can reason about how the program will behave at run-time. In particular, this means that
there is no garbage collection. To achieve safety in the absence of garbage collection, Rust
employs compile-time static analysis techniques and semantics to determine exactly when an
allocated value goes out of scope such that it can be freed. Thus, the Rust compiler decides,
at compile-time, where to place destructors and drop statements, freeing the programmer
from that responsibility, while guaranteeing memory safety.

Rust also incorporates features typically associated with functional languages of the ML
family, such as pattern matching, algebraic data types, strong static typing, higher-order
functions and closures. Syntactically, Rust is close to C, employing brace-delineated blocks
for structure and semi-colons to mark the end of statements.

 fn fact(n: usize) -> usize {
 if n > 1 {
 n * fact(n - 1)
 } else {
 1
 }
 }


 fn main() {
 let n = 4;
 println!("Hello world. {}! = {}", n, fact(n));
 }

Listing 1: Hello World and the factorial function in Rust.

Listing 1 shows a small Hello World program, as well as a definition of the factorial
function. The usize and isize (not shown here) types are pointer-sized integers, unsigned
and signed respectively. Rust is expression-oriented: the last statement of a block is the
value of the block if not terminated by a semi-colon, and all functions and statements have
a return type.2 Variable bindings are introduced with the let notation. Variable bindings
are immutable by default; you can explicitly mark a binding as mutable by using let mut.
println! is a macro, indicated by the exclamation mark. An interesting fact is that macros
are expanded and type checked at compile-time, and they are powerful enough that println!
can statically check that it receives the appropriate number of arguments.

The development of Rust is community-driven and publicly available on GitHub.3 At the
time of writing, there is no official language specification, but there is a reference document
that informally describes the language constructs, the memory model and other parts of
the language [10]. Work has been done to provide a formalization of the Rust, with formal
semantics and soundness proofs for a collection of core operations [11]. The Rust compiler,
rustc, serves as a reference implementation.

2When terminated by a semi-colon, the value of the block is the unit value ()
3http://github.com/rust-lang/rust

2 RUST, A MEMORY-SAFE LANGUAGE 10

Section 2.1 introduces the ownership model and the move/copy semantics which form
the basis of Rust’s memory management scheme, as well as a vital part of our implemen-
tation of session-typed channels. Section 2.2 explains how structs, Rust’s compound data
structures, work, while Section 2.3 describe Rust’s trait system, which provides parametric
polymorphism. Section 2.4 details some of the concurrency primitives implemented in the
Rust standard library, and finally, Section 2.5 presents the unsafe keyword, which provides a
way to temporarily circumvent Rust’s safety mechanisms.

2.1 Ownership and Move Semantics

Ensuring memory safety and eliminating data races are two of Rust’s main goals. To achieve
this, Rust uses two concepts called ownership and move semantics. This section will explain
these two concepts.

Generally, ownership is about resource management. A resource could be a file handle,
a socket, or a myriad of other things, but we will explain ownership in terms of memory
management. Basically, every piece of allocated memory is uniquely owned by a scope, and
at the end of a scope, any owned memory allocations are automatically deallocated. This
ensures that all allocated memory is deallocated exactly once and in a predictable fashion.
The idea of letting the scope determine the exact deallocation point for memory allocations
is known as region-based memory management and was developed in [12] and implemented
in the MLKit and Cyclone programming languages, among others [13, 14].

Ownership may be transferred. For example, a function may pass a variable to another
function and hand over the ownership of the variable’s value. The compiler tracks the own-
ership transfer and the calling function may no longer refer to the transferred variable. In
Rust terminology the value has been moved and this behaviour is called move semantics.
Move semantics are the default behaviour in Rust. For example, the process_list function
in Listing 2 specifies that the function takes ownership of the list argument, a vector of
bytes.

 fn process_list(list: Vec<u8>) {
 // ... At the end of this function ‘list‘ is deallocated
 }


 fn borrow_list(list: &Vec<u8>) {
 // ... ‘list‘ is borrowed until the end of this function (but not deallocated)
 }

Listing 2: Examples of owning and borrowed function arguments.

Move semantics contrast with the traditional behaviour of programming languages which
is to copy function arguments from caller to callee. In Rust, this is referred to as copy
semantics and is sometimes a useful behaviour. Copy semantics can be opted into for a given
type by implementing the Copy marker trait (see Section 2.3 for an introduction to the trait
system). All primitive types in Rust are Copy and thus subject to copy semantics.

When a function does not wish to take ownership of an argument, it may specify that the
value is borrowed. For instance, the borrow_list function in Listing 2 receives a reference to
a vector of bytes for the duration of the function. Borrows, also called references, come in
two forms:

• Immutable, denoted by &. There may be multiple active immutable references at any
given point
• Mutable, denoted by &mut. There may only ever be one active mutable reference and

no immutable references at the same time.

2 RUST, A MEMORY-SAFE LANGUAGE 11

In either case, the owner of a variable may not mutate its value while there are active borrows,
and the owner may not read from the variable while a &mut reference is active.

The rules governing references are semantically equivalent to read-write locks, allowing
concurrent access for read operations, whereas write operations require exclusive access. The
borrowing rules thus prevent memory-safety issues in a single-threaded context.

References exist for a certain duration before they are dropped. This duration is called
their lifetime and Rust’s lifetime system ensures that references do not outlive their referent,
otherwise the reference could eventually be referring to deallocated memory, which would be
an error.

As it turns out, Rust’s move semantics and borrowing system are not only useful for
avoiding a wide variety of common memory errors, they also naturally extend to support
safe multi-threaded programming without data races: Because all data is owned by exactly
one lifetime scope, the only way to share data between processes is through borrows, and
since mutable borrows exclude any other attempts at accessing the data, no two processes
can modify a given piece of data at the same time, and if there is a process that is currently
modifying some data, other processes cannot read potentially inconsistent states. The result
is that Rust’s borrows and lifetime system, combined with Send and Sync bounds, form the
building blocks for constructing safe concurrency primitives such as those included in the
standard library.

2.2 Structures

Compound data types are defined as structs. Listing 3 shows the declaration of a Rectangle

struct, a representation of a rectangle.

 struct Rectangle {
 height: f64,
 width: f64
 }


 impl Rectangle {
 fn new(h: f64, w: f64) -> Rectangle {
 Rectangle {
 height: h,

 width: w
 }
 }
 fn area(&self) -> f64 {
 self.height * self.width
 }
 }

Listing 3: Example of a struct declaration and method implementation.

Methods are defined on structs in separate impl blocks. In Listing 3 we add two methods
to the Rectangle struct, new and area. The new method is called a static method and is
invoked as Rectangle::new(h, w). It is a common idiom to define constructors like this, but it
is not enforced by the language—new could have been called anything. The area method can
only be invoked on instances of the Rectangle type, indicated by the &self argument. The
explicit self argument is a familiar concept from languages such as Python, but in Rust the
programmer must additionally specify how the self parameter is passed: either it is moved
(self) or obtained by reference (&self or &mut self).

2 RUST, A MEMORY-SAFE LANGUAGE 12

2.3 Traits

Before we can introduce the trait system, we will briefly go over Rust’s support for generics.
Generics implement parametric polymorphism, and allows functions to take and return values
without knowing their type. For instance, Listing 4 shows a (rather silly) function that takes

 fn optionify<T>(x: T) -> Option<T> {
 Some(x)
 }

Listing 4: The function optionify takes a generic argument and wraps it in an Option container.

an x of any type (indicated by the generic type parameter T) and wraps it in an Option

container. We refer the reader to [15] for a full introduction to generics in Rust.
Traits in Rust are primarily a method of placing bounds on generics, and serve much the

same role as interfaces in Java or, perhaps more closely, typeclasses in Haskell. As such, the
trait system is used to implement ad-hoc polymorphism.

 trait HasArea {
 fn area(&self) -> f64;
 }


 impl HasArea for Rectangle {
 fn area(&self) -> f64 {
 self.height * self.width
 }
 }



 fn print_area<T: HasArea>(shape: T) {
 println!("The shape has an area of {}", shape.area());
 }

Listing 5: Trait declaration, implementation and usage.

A trait is declared with the trait keyword, a name and a block containing method
declarations, as demonstrated in Listing 5. The trait HasArea contains a single method
declaration, area, with no body. Method declarations in traits can optionally provide a
default implementation by simply providing a body, much like virtual methods in C++ or
abstract class methods in Java. For example, the Iterator trait from Rust’s standard library
provides a host of different ways to iterate over data with default implementations, but
requires the implementation of a next method to obtain the next item in the iterator.

A trait is implemented for a type in a separate impl block, reminiscent of method im-
plementations, written as “impl Trait for Type”. In Listing 5 we implement HasArea for
Rectangle and provide a body for the area method.

A function can then specify a trait bound on generic parameters, requiring a generic
argument to implement a given trait. In Listing 5 the print_area function only accepts
types that implement the HasArea trait. This allows the function to invoke the area method
irrespective of the specific argument type.

Multiple traits can also be specified in a single bound by separating the trait names with
“+”. For example A: Debug + Clone dictates that the type A must implement both the Debug

and Clone traits. Where A is then used, all methods declared in both traits can be invoked.
Trait bounds may also be provided in where clauses as shown in Listing 6 as a rewritten

version of print_area. At first this may seem like redundant syntax, but where clauses are
more expressive than regular trait bounds. Specifically, they allow bounds where the left-

2 RUST, A MEMORY-SAFE LANGUAGE 13

hand side is an arbitrary type—see Listing 7 for an example. The increased expressibility
afforded by where clauses allows us to establish more complex relationships between types.

 fn print_area<T>(s: T) where T: HasArea
 {
 println!("Area: {}", s.area());
 }

Listing 6: Using where clauses.

 // This is invalid
 fn foo<i32: Trait<T>>(x: i32) {
 /* body */
 }


 // But this is valid
 fn foo<T>(x: i32) where i32: Trait<T> {
 /* body */
 }

Listing 7: Example use of where not possible with
regular trait bounds.

Since their inclusion, traits have found a wide variety of uses. Indeed, in Rust itself they
are used for the majority of binary and unary operators (e.g. the Add trait), copy semantics
(Copy), thread-safety (Send and Sync), and many other things.

2.3.1 Associated Types

An extension to Rust’s trait system are associated types. It stems from the idea of type
families and grouping multiple types together.

The canonical example from the RFC4 and [15] is the definition of a Graph trait, which
is generic over its nodes and edges. Consider Listing 8 which defines the Graph trait with
associated functions has_edges and edges, and a function dist. It is evident that writing
functions that take graphs as arguments quickly becomes cumbersome; even though dist is
not using the edges of the graph, it must still specify a type parameter for edges to use G.

 trait Graph<Node, Edge> {
 fn has_edge(&self, &Node, &Node) -> bool;
 fn edges(&self, &Node) -> Vec<Edge>;
 }


 fn dist<N, E, G: Graph<N, E>>(g: &G, start: &N, end: &N) -> u64 {
 // ...
 }

Listing 8: A graph defined as a trait.

Alternatively, we may use associated types, as demonstrated in Listing 9. Associated
types allow us to rewrite the Graph trait, such that the Node and Edge types depend on the
implementation of the Graph trait. Now, to implement the dist function we only have to
specify that G implements Graph, and we may freely refer to the associated types Node and
Edge.

Since their inclusion, associated types have also shown to open up for more sophisticated
implementations for the binary operators, defined as traits. For example, the addition op-
erator “+” is defined by the trait declaration in Listing 10. The declaration of Add allows
definitions for addition across types. For example, a representation of complex numbers in a
Complex struct might conceiveably implement the following versions of Add:

impl Add<Complex> for Complex { type Output = Complex; ... }
impl Add<Complex> for u64 { type Output = Complex; ... }
impl Add<u64> for Complex { type Output = Complex; ... }

4https://github.com/rust-lang/rfcs/blob/master/text/0195-associated-items.md

2 RUST, A MEMORY-SAFE LANGUAGE 14

 trait Graph {
 type Node;
 type Edge;
 fn has_edge(&self, &Node, &Node) -> bool;
 fn edges(&self, &Node) -> Vec<Edge>;
 }


 fn dist<G: Graph>(g: G, start: &G::Node, end: &G::Node) -> u64 {
 // ...

 }

Listing 9: A graph trait using associated types.

 pub trait Add<RHS=Self> {
 /// The resulting type after applying the ‘+‘ operator
 type Output;


 /// The method for the ‘+‘ operator
 fn add(self, rhs: RHS) -> Self::Output;
 }

Listing 10: The Add trait.

which allows the programmer to use the addition operator to not only add complex numbers
to each other, but also add u64s to complex numbers. The trait system will infer at the call
site which implementation to invoke.

2.4 Concurrency

Early versions of Rust had concurrency features built into the language, but it turned out
that the requirements for building safe concurrency mechanisms could be fulfilled through
the use of ownership, lifetimes, and two marker traits, Sync and Send, which specify what
types can be safely shared between threads and exchanged between threads respectively.5

A type T is said to be Sync if &T can be used concurrently without introducing memory
unsafety or data races. This is true of all the primitive types and most container types.
Generally, types that are Sync adhere to inherited mutability. Inherited mutability means
that the mutability of a variable binding for a struct value is inherited by the struct fields,
i.e. the state of a struct value cannot be modified if the variable binding is not declared
mutable (mut or &mut). By contrast, types that provide interior mutability can be mutated
through immutable bindings. Such types are in general not thread-safe and therefore should
not implement Sync.

For instance, consider Listing 11, which contains a declaration of a Counter struct and a
method for said struct, add1. The add1 method takes an immutable reference to a Counter, but
you will notice that it actually increments the internal counter: it uses interior mutability, so
it should not implement Sync.

A type T is Send if transferring ownership of the value into another thread cannot result in
a data race. This is true for almost all data types except for the raw pointers types *const T

and *mut T, which we will touch upon in Section 2.5
Usually, Rust will automatically implement Sync and Send and complain in cases where

automatic implementations cannot be derived (but are required). The inference are relatively
straight-forward, defined inductively for compound data types, i.e. a data type is Send if all

5For more information about how Rust’s ownership model facilitates concurrency in a safe manner, see
http://blog.rust-lang.org/2015/04/10/Fearless-Concurrency.html

2 RUST, A MEMORY-SAFE LANGUAGE 15

 struct Counter {
 x: RefCell<usize>,
 }


 impl Counter {
 fn add1(&self) {
 let mut ptr = self.x.borrow_mut();
 *ptr += 1;
 }

 }

Listing 11: A struct which has interior mutability.

its constituent parts are Send. This rules out any type containing raw pointers.
In order to support concurrency, the Rust standard library provides mechanisms for both

message passing and shared memory communication between threads, as well as a wide
variety of synchronization primitives. Our work relies mostly on message passing, which is
implemented through multi-user, single-consumer FIFO channels. Channels are created using
the function:

fn channel<T: Send>() -> (Sender<T>, Receiver<T>)

The return value contains two endpoints—one endpoint is used for sending values, the other
for receiving them. This separation of the end-points is a consequence of Rust’s ownership
model, as the threads can be allowed to own their half of the channel. It also serves to enforce
the direction on the channel (they are uni-directional) and supports the design choice that
Senders can be cloned, but Receivers cannot. This eliminates any potential ambiguity of who
will actually receive a value—the design ensures that for a given Sender there is a unique
Receiver.

The net result of the Sync and Send abstractions is that the choice of concurrency primitives
is not dictated by the language, but rather enables the user to implement and explore different
paradigms.

2.5 Unsafe Code

Thanks to static analysis and borrow checking, the majority of Rust code is memory safe.
However, sometimes it is necessary to circumvent Rust’s safety mechanisms in order to express
safe programs that cannot be statically verified. For purposes like this, Rust provides the
unsafe keyword (see Listing 12), which allows the programmer to mark a block, function,
method implementation, or trait as unsafe. An example is the transmute function that we
will describe in more detail later.

 unsafe fn read<T>(src: *const T) -> T {
 // all code here may is considered unsafe
 }


 // Calling an unsafe function
 fn main() {
 let n: *const u32 = &42;
 let m = unsafe {
 read(n)

 };
 }

Listing 12: Unsafe function declaration.

2 RUST, A MEMORY-SAFE LANGUAGE 16

Calling an unsafe function can only be done from another unsafe function or from inside
an unsafe block. Using an unsafe block is demonstrated in Listing 12, where we also see the
declaration of a raw pointer type, the *const T (the mutable variety is *mut T). Raw pointers
are exempted from all of the rules imposed on references:

• They are allowed to freely alias.
• They can be null and are not guaranteed to point to valid memory.
• They require manual memory management, as there is no automatic clean-up.
• They do not move ownership.
• They do not have lifetimes.

In short, raw pointers are directly translatable to pointers in C, and as a result they are
considered unsafe to dereference.

It may be tempting to dismiss the safety efforts implemented in Rust if the language
then provides a way to disable all the safety mechanisms, but unsafe exists because it allows
some common use cases that are provably safe, but not verifiable by the borrow checker. An
example of this is the doubly-linked list data structure. Providing pointers in both directions
in a list requires the pointers to alias, but this is prohibited for mutable references. For
shared references, the borrow checker cannot infer appropriate lifetimes for the references.
Hence, raw pointers are required to build a doubly-linked list. In short, unsafe code should
only be used when Rust cannot statically verify a piece of code that we know to be safe. The
programmer may temporarily break memory consistency in an unsafe block or function, but
it is her responsibility to ensure that consistency is restored at the end of the block.

The unsafe keyword also serves as a visual cue to programmers that potentially memory-
unsafe operations take place, and applications that experience problems with memory man-
agement, such as use-after-free or dangling pointers, should be able to locate their errors in
unsafe blocks. Being able to isolate and label potentially memory-unsafe operations is a huge
advantage when dealing with memory-safety issues.

There are cases where unsafe operations are preferable, because they allow an implemen-
tation that is faster than the verifiably safe equivalent, and many of the abstractions provided
in Rust’s standard library use unsafe operations to construct safe interfaces.

transmute In the later chapters we will require the ability to interpret one type as another
and Rust provides a built-in function transmute to perform that operation. Its declaration is:

pub unsafe extern "rust-intrinsic" fn transmute<T, U>(e: T) -> U;

The transmute function reinterprets a type T as some other type U with the restriction that
the types must have the same size in memory. This operation is not safe in general, so the
function is marked as unsafe. As example usage of transmute from [15] is shown in Listing 13
showing that we can interpret an array of four bytes as a 32-bit number. In Rust, an array
has a fixed size that is part of the type and therefore the Rust compiler can verify that the
sizes are the same.

 use std::mem;
 unsafe {
 let array: [u8; 4] = [0u8, 0u8, 0u8, 0u8];


 let number = mem::transmute::<[u8; 4], u32>(array);
 }

Listing 13: Interpreting an array of four bytes as a 32-bit integer.

3 SERVO, A CONCURRENT BROWSER 17

3 Servo, a Concurrent Browser

This section describes the architecture and internal communication patterns of Servo. It
highlights some problems in the communication structure and discusses how they may be
fixed. Section 3.1 presents an overview of the architecture of Servo and Section 3.2 explains
its communication patterns in greater detail. We then go on to discuss how the communica-
tion strategy, although simple to implement, is difficult to maintain in an evolving piece of
software. A challenging part of the communication strategy is orchestrating shutdown, and
in Section 3.3 we discuss in detail how this is handled in Servo. Finally, Section 3.4 outlines
our requirements for a solution to the challenges that we identify.

3.1 Servo and its Architecture

This section describes the overall workflow in Servo and the different tasks involved in ren-
dering a web page.

When an HTML document is loaded, it is parsed and turned into a DOM tree. Associated
styling information, through inlined or linked CSS documents, is also loaded and a styled tree,
called a flow tree, is computed with styling information. The flow tree is then processed to
produce a set of display list items, which represent the actual graphical elements in their
final on-screen position. Once all the elements to appear have been computed, they are
rendered onto layers, that are either a set of memory buffers or graphical surfaces. These
layers are then composited together to produce the final image for presentation. Throughout
the different passes of rendering a page, JavaScript code may execute at any time, and these
scripts may modify the DOM tree, which requires reruns of the layout and painting task.

The design of Servo is focused on taking advantage of opportunities to parallellize as
many tasks as possible. One of the unique achievements in Servo is the concurrent execution
of the rendering and compositing phase, where traditionally these phases are implemented
sequentially, because script execution may interact with the DOM in non-obvious ways.

In Servo, there are a number of different tasks involved:

Compositor Handles compositing and relaying events from the window system to the con-
stellation, while receiving messages from the constellation and paint task.

Constellation Conceptually, the constellation corresponds to a single tab or window in a
browser. It manages pipelines for rendering and handles events from its script tasks
and the compositor.

ScriptTask Owns the DOM in memory, runs JavaScript and spawns parsing tasks.
LayoutTask Performs layout on the DOM, builds display lists and sends these to be painted.

The display list is a sequence of high-level drawing commands that can be sent to the
paint task.

PaintTask Handles all painting. It handles three-way communication with the compositor,
constellation and layout task.

The constellation constructs a new pipeline for each page load. A pipeline in Servo comprises
a script task, a layout task and a paint task, so when we talk about a “pipeline” we are talking
about this particular grouping. Pipelines are organized in a tree to handle iframes (called a
frame tree). All pages have a top-level frame and iframes can be arbitrarily nested inside the
frame. Modern websites use iframes not only for content, but for ads, trackers and various
social media buttons.

On receiving a new URL to load, the constellation creates a new pipeline with associated
script, layout and paint tasks. The actual fetching of resources and parsing is then delegated
to the script task. Loading a page in a script task consists of two steps: The first step
is initiating a network request to fetch the named resources. This is implemented as a

3 SERVO, A CONCURRENT BROWSER 18

non-blocking procedure and while it is underway, the script task is free to handle incoming
events from other sources. It keeps track of incomplete loads to defer certain actions until
their completion. The second step is parsing, which is instantiated as soon as the loading
completes.

Although the script task owns the DOM structure, the layout task performs layout on
the DOM at the request of the script task. The paint task communicates primarily with the
layout task and compositor performing painting on request.

The above-mentioned tasks are central to the rendering pipeline in Servo. There are other
tasks assisting these central tasks mostly in terms of resource management; the resource task,
image cache task, font cache task, storage task and time and memory profiling tasks (plus
some others) are all “global” tasks. They are instantiated by the constellation and live until
the constellation shuts down, and can be viewed as servers in a more traditional client-server
setting. All the pipeline tasks (script, layout and paint) hold references to some or all of
these tasks and query them for various bits of information.

It is not uncommon in Servo for anonymous worker threads to perform some work asyn-
chronously. As an example, we will look at the start_page_load function (Listing 14) called
by the script task on initialization and when new pages are loaded. Instead of blocking on
a Load message, it defers the workload to another thread, by a call to spawn_named. The
script task is then free to respond to other requests while the resource task handles the Load

message. On completion, the worker thread passes the result returned by the resource task
to the script task by another message, PageFetchComplete.

 fn start_page_load(&self, incomplete: InProgressLoad, mut load_data: LoadData) {
 // Channels
 let script_chan = self.chan.clone();
 let resource_task = self.resource_task.clone();


 spawn_named(format!("fetch for {:?}", load_data.url.serialize()), move || {
 let (input_chan, input_port) = channel();
 resource_task.send(ControlMsg::Load(NetLoadData {
 // Fields with values for NetLoadData

 consumer: input_chan,
 })).unwrap();


 let load_response = input_port.recv().unwrap();
 script_chan.send(ScriptMsg::PageFetchComplete(id, subpage, load_response))
 .unwrap();
 });
 self.incomplete_loads.borrow_mut().push(incomplete);
 }

Listing 14: Initiating a page load.

3.2 Communication Patterns

This section describes the communication patterns employed in Servo today and attempts to
describe how the current method does not prevent common communication problems.

The canonical method employed in Servo to structure communication is simple: A task
exposes an API through an enum type, describing the different kinds of messages it can
receive. A simple example is the ResourceTask defined in Listing 15. The ControlMsg enum
type defines four variants, each corresponding to a message.

An interesting variant of ControlMsg is the second field of GetCookiesForUrl of type Sender<Option<String>>.
It showcases another common communication pattern where the requester passes in a channel

3 SERVO, A CONCURRENT BROWSER 19

 type ResourceTask = Sender<ControlMsg>;


 enum ControlMsg {
 Load(LoadData),
 SetCookiesForUrl(Url, String, CookieSource),
 GetCookiesForUrl(Url, Sender<Option<String>>, CookieSource),
 Exit
 }

Listing 15: The ResourceTask and its message API.

 loop {
 match self.from_client.recv().unwrap() {
 ControlMsg::Load(load_data) => {
 // load data ...
 }
 ControlMsg::SetCookiesForUrl(request, cookie_list, source) => {
 // set cookie ...
 }
 ControlMsg::GetCookiesForUrl(url, consumer, source) => {

 // get cookie ...
 consumer.send(maybe_cookie);
 }
 ControlMsg::Exit => {
 break
 }
 }
 }

Listing 16: Handling control messages in ResourceManager.

on which to send a response.
The ResourceManager, when spawned, loops indefinitely receiving control messages. See List-

ing 16. This pattern, although readable, suffers a simple flaw: What if a thread sent it
ControlMsg::Exit before other clients were finished? Any thread holding a ResourceTask han-
dle may access this API, and there is no way to keep track of the number of clients still
wishing to communicate with the ResourceManager. In particular, there is no visibly assigned
responsibility for sending ResourceManager the shutdown signal, meaning any thread could
potentially assume that responsibility.

The resource manager (or any receiving thread) cannot control who sends a given message
nor control who may send it messages. Although this is typically desirable to reduce the
coupling between components in a system, it would be disastrous if any thread other than
the constellation sent an Exit message to the resource manager. The problem here is that
there are certain implicit assumptions concerning who sends which type of messages. It
should only be the constellation that shuts down the resource manager, but this restriction is
not reflected in the resource manager’s API. If a developer is not aware of such assumptions or
restrictions, she can only rely on documentation to ensure she follows the protocol correctly.
In other words, the responsibility for behaving correctly with respect to an implicit protocol is
left in the hands of the developer and this discipline becomes increasingly difficult to maintain
as a project and its communication APIs grow.

The internal communication protocols have evolved gradually as Servo has grown. If a
new type of message was required from one task to another, it was added and handled appro-
priately in other places where it required handling. As the number of inter-communicating
tasks have grown, these communication schemes become difficult to maintain and extend, a

3 SERVO, A CONCURRENT BROWSER 20

Figure 1: The shutdown sequence for a pipeline for a complete shutdown. ack messages are “acknowl-
edgment” messages of type ().

condition that has been referred to as “protocol soup”.

3.3 The Shutdown Sequence

This section describes how Servo handles shutting down single pipelines and complete shut-
downs. The shutdown sequence is important, because deterministically shutting down a host
of intercommunicating processes is no simple task, and it has proved to be problematic in
Servo.

Throughout Servo’s lifetime pipelines are created and shut down. Pipelines are created
by the constellation to handle new page loads and form a chain that reflects the current
browsing history. Navigating backwards (usually done by pressing the backspace key) does
not create a new pipeline, but instead fetches an existing pipeline. Pipelines are shut down
when they become part of a branch in the history no longer accessible by backwards and
forwards navigation.

From the point of view of a pipeline, there are two shutdown “modes”, defined by the
PipelineExitType enum type:

• PipelineOnly: Only this pipeline is being shut down. The only tasks to be shut down
are its associated script, layout and paint tasks. As this action was initiated by the
constellation, the compositor is notified of exited pipelines (PaintTaskExited).
• Complete: The entire application is shutting down. This action originates either from the

compositor or the script task. The script task routes this message via the compositor, so
it appears to originate from the compositor. In this case the compositor does not need
to be notified of exited pipelines and it only waits for confirmation that the constellation
has exited.

The exit mode has implications for the behaviour of the tasks being shut down. In a pipeline-
only shutdown the paint task will wait for any layer buffers the compositor is currently
borrowing to be returned to it before terminating. If the paint task did not wait, the buffers
would leak. During a complete shutdown the paint task will not wait, because all resources
used by Servo (including would-leak buffers) will be collected by the operating system when
the application exits.

In a complete shutdown, all pipelines are requested to shut down (by the constellation) and
the flow of Exitmessages follows the pattern presented in Figure 1 (for a single pipeline). Each
task in the chain awaits acknowledgment from the next task in the chain before terminating.
The script task has the responsibility for shutting down the layout task and the layout task
in turn shuts down the paint task. The pipeline awaits confirmation of shutdown from both
the layout and paint task on a separate port.

3 SERVO, A CONCURRENT BROWSER 21

 /// Enters a quiescent state in which no new messages except for
 /// ‘layout_interface::Msg::ReapLayoutData‘ will be processed until an ‘ExitNow‘
 /// is received. A pong is immediately sent on the given response channel.
 fn prepare_to_exit<’a>(&’a self, response_chan: Sender<()>) {
 response_chan.send(()).unwrap();
 loop {
 match self.port.recv().unwrap() {
 Msg::ReapLayoutData(dead_layout_data) => {
 // ... Handle dead layout data

 }
 Msg::ExitNow(exit_type) => {
 debug!("layout task is exiting...");
 self.exit_now(exit_type);
 break
 }
 _ => {
 panic!("layout: message that wasn’t ‘ExitNow‘ received after \
 ‘PrepareToExit‘")
 }
 }
 }
 }


 /// Shuts down the layout task now. If there are any DOM nodes left, layout will now
 /// (safely) crash.
 fn exit_now<’a>(&’a self, exit_type: PipelineExitType) {
 let (response_chan, response_port) = channel();


 // ... omitted shutdown of ‘possibly_locked_rw_data‘


 self.paint_chan.send(PaintMsg::Exit(Some(response_chan), exit_type));
 response_port.recv().unwrap()
 }

Listing 17: The two-step shutdown logic for the layout task.

The normal shutdown sequence for the layout task is two-step: It first receives a PrepareToExit

message and enters a state in which it only accepts two types of messages: ReapLayoutData

and ExitNow. This stage exists to ensure no memory is leaked. The corresponding methods
handling these messages are shown in Listing 17. There are a few observations to be made
here: Firstly, the layout task does not request the paint task to exit before ExitNow is received,
so at the time the paint task receives the exit message, the layout is ready to exit. Secondly,
whilst waiting to receive the ExitNow, the paint task will panic if any other message type
than ReapDataLayout or ExitNow is received. This behaviour makes the layout task brittle,
because there is no explicit mechanism in place to ensure this does not happen. It is the
responsibility of the developer to ensure this scenario does not occur, and in a concurrent,
non-deterministic context it can be a difficult promise to keep. From the viewpoint of tasks
wishing to interact with the layout, it would appear as if the layout task may behave differ-
ently over time when receiving the same type of message. Ideally, its protocol should have
changed and the interacting parties been notified.

3.3.1 An Example of Communication Inconsistency

There is an alternate shutdown scheme for a single pipeline. In case a task in a pipeline has
crashed and the pipeline must be forcibly closed, the constellation can invoke force_exit on

3 SERVO, A CONCURRENT BROWSER 22

the pipeline. An annotated version of the force_exit method is shown in Listing 18.

 pub fn force_exit(&self) {
 // Send ‘ExitPipeline‘ to script task
 let ScriptControlChan(ref script_channel) = self.script_chan;
 let _ = script_channel.send(
 ConstellationControlMsg::ExitPipeline(self.id,
 PipelineExitType::PipelineOnly)).unwrap();


 // Send ‘Exit‘ to paint task
 // ‘None‘ indicates the pipeline does not want confirmation of shut down

 let _ = self.paint_chan.send(PaintMsg::Exit(None, PipelineExitType::PipelineOnly));


 // Send ‘ExitNowMsg‘ to layout task
 let LayoutControlChan(ref layout_channel) = self.layout_chan;
 let _ = layout_channel.send(
 LayoutControlMsg::ExitNowMsg(PipelineExitType::PipelineOnly)).unwrap();
 }

Listing 18: The force_exit method on pipelines.

In this forced exit, the pipeline sends exit messages to all tasks, instead of proceeding in
the circular fashion shown in Figure 1. This is necessary, because any of its tasks could have
crashed and it is not known which. In particular, the layout task is asked to exit immediately,
skipping the intermediate data reaping stage, i.e. skipping prepare_to_exit and going straight
to exit_now. Regardless, the layout task will ask the paint task to exit—as will the pipeline.
This following communication sequence will thus lead to a crash:

1. pipeline.force_exit() is invoked. Pipeline sends exit messages to script, layout and
paint tasks

2. Layout task receives ExitNow message from pipeline
3. Paint task receives pipeline-only exit message from pipeline
4. Paint task has zero outstanding buffers and exits immediately
5. Layout task sends exit message to paint task and awaits response

The layout task will crash at this point, because the paint task already exited. Subtle
differences in behaviour and timing can avoid this crash: If the paint task waits for more
buffers, it can still receive another Exit message and thus respond to the layout task. The
paint task may also happen to process the message from the layout task before the message
from the pipeline, avoiding the crash situation. We note that we have not observed a crash
caused by this scenario, but it is evident that this scenario is avoided by chance and not by
careful design.

3.4 Finding a Solution

The problem we would like to address is the problem of process crashes caused by miscom-
munication. The tasks running in Servo are not expected to crash, and we should make
efforts to prevent them from crashing. Our goal is to reduce the risk of crashes by making
the communication schemes safer.

We list the following requirements for a solution. It should:

1. Be possible to “specify” the communication schemes in advance to specify what inter-
action patterns are allowed.

2. Provide static guarantees that interaction patterns cannot be violated.
3. Be possible to implement in Rust, as a library.

3 SERVO, A CONCURRENT BROWSER 23

4. Be usable in Servo

We prefer static guarantees in item 2 over run-time checks for performance reasons. Servo’s
internal communication should be fast and not overly burdened. To implement changes in
Servo, it should be possible to provide a solution as a Rust library (a Rust library is called
a crate).

Considering our requirements, the nearest candidate for a solution is the session type
theory. Session types enhance channel-based communication with a form of protocol specifi-
cation and through its type discipline ensures that only compatible communication patterns
can occur.

Session types are intriguing, because the definition lends itself to embeddings in other
programming languages, but the requirement of linear handling of sessions requires special
attention in most programming languages, because this restriction is not straight-forward to
encode. We introduce the session type theory in detail in the next section.

4 SESSION TYPES 24

4 Session Types

This chapter properly describes the session type theory which underpins the rest of this
dissertation. We provide an overview of the session type language L and its type system.

Session types were first introduced in [16] and provided a new method for structuring
sequences of reciprocal interactions in a type-safe manner. Concurrency primitives based
on message-passing have been studied greatly and implemented in a host of programming
languages, but typically each interaction is considered distinct and unrelated to other inter-
actions. The session type theory introduced a basic structuring concept called a session. A
session has an associated (implicit) channel over which all interactions take place and the
interactions via a session are modelled by a type—called a session type. The typing sys-
tem then ensures that two processes only communicate via a session if their session types are
compatible. Session types allow the programmer to specify complex communication protocols
without worrying about run-time errors caused by violations of the protocol.

As a concept session types are suitable for embedding in other programming languages,
but were initially developed in its own language L to clearer showcase the novel features of
the system in a minimal language. Since their introduction, session types have been studied
widely and re-formulated in other formal frameworks, in particular the π-calculus [2, 17],
implemented in programming languages, both as libraries and language extensions [18, 19].

Section 4.1 gives a general introduction to the Honda-Vasconcelos-Kubo session typing
system, and describes the language L in which it is implemented, while Section 4.2 introduces
the typing system used in L. Section 4.3 describes the implementation of session types in
Haskell first published in [18], which forms part of the inspiration for our implementation of
session types in Rust. Finally, Section 4.4 describes SessionJ, an implementation of session
types for Java, which has also served as a source of inspiration for our library.

4.1 The Honda-Vasconcelos-Kubo Session Typing System

To initialize a session in L the primitives request and accept must be used. Given a port
a, which we can think of as a port in the traditional message-passing way, “request a(k) in

P ” requests a session to be used in the process P , binding it to the name k. “accept a(k) in

P ” accepts incoming session requests bound to the name k and proceeds with the process P .
The syntax of L is shown in Figure 2.

A session conceptually contains an implicit channel through which all interaction takes
place. The basic interactions are send and receive, denoted by ![ẽ];P and ?[ẽ] in P re-
spectively. These operations are equivalent to send and receive in other message-based con-
currency systems. Session interactions also include labelled branching and branch selection.
Branch selection is denoted kB l;P and selects the branch labelled l offered by the opposing
communicating party and continues with the process P . The converse of branch selection is
labelled branching in which the process offers a choice of processes to continue with. It is
denoted kC {l1 : P1, . . . , ln : Pn} and waits for the other process to select a branch by one of
the labels li, and then continues with the process Pi.

Session channels are not first class values in L, meaning that we cannot send session chan-
nels over session channels, so session delegation is handled explicitly. Session delegation uses
the throw and catch keywords to pass a session channel from one process to another in a type-
safe manner. We will not discuss session delegation in great detail, as our implementation
can implicitly handle session delegation without special support.

Apart from session interaction L also includes the basic types integers and booleans,
and the basic control flow structures for conditional branching and recursion. Recursion is
denoted by def D in P , where D can occur in P . P | Q denotes parallel composition and
inact is the inactive process. Sequencing is not explicitly included as each communication
primitive contains a notion of a “next” action. The exceptions to this are the conditional

4 SESSION TYPES 25

P ::= request a(k) in P session request
| accept a(k) in P session acceptance
| k ![ẽ];P data sending
| k ?(ẽ) in P data receiving
| k B l;P label selection
| k C {l1 : P1, . . . , ln : Pn} label branching
| if e then P else Q conditional branch
| P | Q parallel composition
| inact inaction
| def D in P recursion
| throw k[k′];P channel sending
| catch k(k′);P channel receiving
| (νu)P name/channel hiding

| X[ẽk̃] process variables
e ::= c constant
| e+ e′ | e− e′ | e× e′ | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Figure 2: Syntax of L.

branch, parallel composition, process variable and inact constructs. The next action of a
conditional branch is either P or Q, and the next action of a process variable is the substituted
process. Parellel composition and inact do not have a notion of a next action.

The name hiding primitive cannot be used explicitly in programs, but is necessary for the
operational semantics to denote the establishment of a shared, hidden channel between two
processes:

accept a(k) in P | request a(k) in Q −→ (νk)(P | Q) [LINK]

We will not state all the operational semantics rules, but refer the reader to [20]. This
concludes our introduction of the syntax and we give an example program fragment of an
arithmetic server:

Arith = accept a(k) in k C {add : k ?[a] in k ?[b] in k ![a+ b]; inact,

neg : k ?[a] in k ![−a]; inact}

The server accepts a session and offers a choice between two operations, add and neg. The
first operation receives two numbers, a and b, and sends back their sum, and the second
receives one number and sends back its negation. At the end of either branch the session
terminates and no more progress can be made.

We can construct a client to interact with the arithmetic server and write a full program
as follows:

Arith | request a(k) in k B add; k ![2]; k ![5]; k ?[r] in P

Note that the communication patterns of the client and Arith are compatible. The client
requests a session k through the shared port a, selects the add branch and sends the numbers

4 SESSION TYPES 26

2 and 5. It then obtains the answer (hopefully 7) bound to the name r and continues with the
process P . As the session has been terminated, the process P cannot contain any interactions
over the session channel k.

Interacting with the arithmetic server is unergonomic if the client wants to perform multi-
ple additions or negations, because the client would have to repeatedly request new sessions.
We can improve the arithmetic server to recurse after an operation and provide a third branch
to let the client decide when to terminate the session:

Arith’ = accept a(k) in def Ops(k) = k C { add : k ?[a] in k ?[b] in k ![a+ b]; Ops[k]

neg : k ?[a] in k ![−a]; Ops[k]

quit : inact}
in Ops[k]

One of the primary concerns for any implementation of session types is aliasing. Aliasing
a session can lead to communication inconsistencies. For example, consider the following
program:

request a(k) in k ![42]; inact

| accept a(k) in request b(k′) in throw k′[k]; k ?[x]; inact

| accept b(k′) in catch k′[k]; k ?[x]; inact

This program shares the session k between the second and third process, and both processes
execute k ?[x], i.e. attempt to receive a value over k. The first process only sends one value
and thus the protocol associated with k can only allow one interaction. The result is that
this program cannot complete successfully because the communication is inconsistent, and
the type system will reject it. To address this, any implementation of session types should
consider session channel as linear types, or at the very least affine types [18]. This prevents
aliasing and thus communication inconsistency. As we saw in Section 2.1 Rust’s move seman-
tics implement affine types and we will see in Section 5 how move semantics directly address
this requirement. Embeddings in other programming languages must explicitly tackle this
issue by other restrictions, but in Rust the required language features are already in place.

For the remainder of this dissertation we will primarily describe session types by the type
system rather than stating programs written in L.

4.2 Type System

This section introduces the typing system for session type channels in L. Its novel features
are the treatment of session channels and the ability to verify the compatibility of process
interaction beyond singular message passing. The typing discipline ensures that only type
safe interaction patterns are allowed.

The grammar for session-typed channels is shown in Figure 3. Type variables are ranged
over by t, t′, . . . , S is the set of sorts ranged over by S, S′, . . . and T is the set of types
ranged over by α, β, S̃ is a vector of S.

The type ?[S̃];α represents receiving values of sorts S̃, and continuing with the type α.
![S̃];α is the converse, or dual, of ?[S̃];α and represents sending values of sorts S̃ followed
by the actions prescribed by the type α. Labelled branching is typed as &{l1 : α1, . . . , ln :
αn} which waits with n options, labelled l1 through ln, and continues with type αi if the
branch li is selected. The converse of labelled branching is branch selection and its type
is ⊕{l1 : α1, . . . , ln : αn}, which indicates an active choice of a branch li is made and the
process continues with the type αi. The type of inact is end and it terminates the sequential
composition. The type µt.α is a recursive behaviour which performs α and upon encountering

4 SESSION TYPES 27

S ::= nat | bool | 〈α, α〉
α ::= ?[S̃];α | ?[α];β | &{l1 : α1, . . . , ln : αn} | end | ⊥
| ![S̃];α | ![α];β | ⊕{l1 : α1, . . . , ln : αn} | t | µt.α

Figure 3: The syntax of types in L.

![S̃];α = ?[S̃];α ⊕{li : αi}i∈I = &{li : αi}i∈I
?[S̃];α = ![S̃];α &{li : αi}i∈I = ⊕{li : αi}i∈I
![α];β = ?[α];β end = end

?[α];β = ![α];β µt.α = µt.α

Figure 4: The co-type (or dual) of a type α is denoted α.

t, recurses to perform α again. Recursive types are assumed to be contractive, meaning that
types do not contain a subexpression of the form µt.µt1 · · ·µtn.t, and the type system takes
an equi-recursive approach, considering µt.α and its expansion α[µt.α/t] equivalent. The
types ![α];β and ?[α];β are the types for the session delegation actions, i.e. sending (throw)
and receiving (catch) session channels respectively.

Two types α and β are considered equivalent if we can go from one to the other via
recursive expansion and/or reordering branches. For example, the types ⊕{l1 : α1, l2 : α2}
and ⊕{l2 : α2, l1 : α1} are equivalent, and µt.[ẽ]; t and [ẽ];µt.[ẽ]; t are equivalent. Formally,
equivalence is defined in terms of a largest fix point of a monotone function, but we omit the
full definition and refer the reader to Definition 2.2 of [20].

We state the type of the arithmetic server as follows:

&{add : ?[nat]; ?[nat]; ![nat]; end, neg : ?[nat]; ![nat]; end},

which is a straightforward transcription of the program text. Similarly, the recursive arith-
metic server has the type:

µt.&{add : ?[nat]; ?[nat]; ![nat]; t, neg : ?[nat]; ![nat]; t, quit : end}.

An important concept in the typing discipline is the concept of a dual or co-type (we will
use the former term). The dual of a type α exchanges session interactions with their logical
counterpart. Specifically we exchange ! and ?, and & and ⊕. Computing the dual α is defined
inductively in Figure 4.

Two processes interacting in a session are only compatible if their types are dual. We can
thus verify that our example client from earlier is compatible with the Arith program with
the type:

⊕{add : ![nat]; ![nat]; ?[nat]; end, neg : ![nat]; ?[nat]; end}

The typing rules for ⊕ allows it to be compatible with any &{· · · } construction as long as it
contains a branch labelled add with the subsequent dual type matching ![nat]; ![nat]; ?[nat]; end.
This is evident in the typing rule for branch selection:

Θ; Γ ` P B ∆ · k : αj
(1 ≤ j ≤ n)

Θ; Γ ` k C lj ;P B ∆ · k : ⊕{l1 : α1, . . . , ln : αn}

4 SESSION TYPES 28

The arithmetic server could contain many more branches and the same client program would
still type-check, but its type would be different.

As it may seem strange that the type of the connecting client may depend on branches
the client will never use, a notion of sub-typing for session has been developed in the π-
calculus [17].

This concludes our introduction to L. For a further introduction to L and the Honda-
Vasconcelos-Kubo session typing system, we refer to [20], which includes proper type equiv-
alence definitions, lists the typing judgements, and proves that the system preserves type
safety. Informally stated for session types, type safety means that in a well-typed program,
a process cannot send a value of a type not expected by the receiving party.

4.3 Session Types in Haskell

This section describes the implementation of session types in Haskell published in [18]. There
are other implementations of session types in Haskell [21, 22], but this one is noteworthy
because it is relatively straightforward to use (thanks to the ixdo preprocessor, Haskell’s do-
notation, and Haskell’s powerful type inference), and its formulation of session types readily
translate into other polymorphic, typed languages, such as Java [18]. For simplicity, we
will focus on the implementation of a single implicit channel: The paper also extends the
implementation to work with multiple channels in a single session.

The session types constructs are implemented by the data types shown in Listing 19.
Recursion is achieved through the Rec and Var constructs and Peano numbers constructed by

 data (:!:) a r ;; send
 data (:?:) a r ;; receive
 data Eps ;; eps
 data (:+:) r s ;; choose
 data (:&:) r s ;; offer
 data Z ;; zero
 data S n ;; successor
 data Rec r ;; enter a recursive scope
 data Var v ;; recurse into scope ‘v‘

Listing 19: Haskell data types for encoding session types.

the use of Z and S. The branching constructs, :+: and :&:, only have two branches; unlike
traditional session type systems, the implementation does not support labelled branching,
but relies on binary branching.

Using these constructs, the type of the recursive arithmetic server from Section 4.2 is
written as follows:

Rec ((Int :?: Int :?: Int :!: Var Z) :&:
((Int :?: Int :!: Var Z) :&: Eps))

However, this is not equivalent to the session type given for the recursive arithmetic server
given in Section 4.2: The order of the branches in the offer type (:&:) matter and “a :&: b”
and “b :&: a” are in general not equal.

Listing 20 shows the definition of a Session and a collection of the functions for interacting
with a session. A Session represents a transition from a state s to a new state s’ yielding a
value of type a, where both s and s’ are capabilities. A capability, represented by Cap, includes
a protocol stack, called the environment, and the current protocol. As an example, send

returns a Session that sends a value x and then continues with the protocol r. Additionally,
the functions close, send, offer, enter, zero and suc are defined, as well as recv, sel1, and
sel2, which have been omitted for brevity.

4 SESSION TYPES 29

 newtype Session s s’ a = Session { unSession :: UChan -> IO a }
 data Cap e r


 close :: Session (Cap e Eps) () ()
 close = Session (_ -> return ())


 send :: a -> Session (Cap e (a :!: r)) (Cap e r) ()
 send x = Session (‘unsafeWriteUChan‘ x)


 -- ‘recv‘ is analogous


 offer :: Session (Cap e r) u a ->
 Session (Cap e s) u a ->
 Session (Cap e (r :&: s)) u a
 offer (Session m1) (Session m2)
 = Session (\c -> do b <- unsafeReadUChan c
 if b then m1 c else m2 c)


 -- ‘sel1‘ and ‘sel2‘ send ‘true‘ and ‘false‘, respectively


 enter :: Session (Cap e (Rec r)) (Cap (r, e) r) ()
 enter = Session (_ -> return ())


 zero :: Session (Cap (r, e) (Var Z)) (Cap (r, e) r) ()
 zero = Session (_ -> return ())


 suc :: Session (Cap (r, e) (Var (S v))) (Cap e (Var v)) ()
 suc = Session (_ -> return ())

Listing 20: Haskell implementations of the Session and Cap types, as well as close, send, offer, enter,
zero and suc.

The zero, suc, and enter functions are of particular interest. Like close, they are no-ops,
but they perform an important function, which is to facilitiate recursion by manipulating
the protocol environment stack. The function enter pushes the current protocol onto the
protocol environment stack, suc pops a protocol from the stack, allowing one to access the
underlying ones with zero, which enters the protocol currently at the top of the stack.

 class IxMonad m where
 (>>>=) :: m i j a -> (a -> m j k b) -> m i k b
 (>>>) :: m i j a -> m j k b -> m i k b
 m >>> k = m >>>= const k
 ret :: a -> m i i a


 instance IxMonad Session where
 ret a = Session (_ -> return a)
 m >>>= k = Session (\c -> do a <- unSession m c

 unSession (k a) c)

Listing 21: The definition of the Indexed Monad.

Session computations can be composed, but instead of a regular monad, Session is an
instance of an indexed monad. Indexed monads help capture the restriction that sessions
should only be composable when the end state of the first session is equal to the start state of
the second session, and they can be used to enforce the affine use of channels. The definition
and implementation is shown in Listing 21. Additionally, an ixdo notation is implemented

4 SESSION TYPES 30

 class Dual r s | r -> s, s -> r


 instance Dual r s => Dual (a :!: r) (a :?: s)
 -- And so on

Listing 22: Haskell definition of Dual plus its instance implementation for :!:.

 newtype Rendezvous r = Rendezvous (TChan UChan)


 newRendezvous :: IO (Rendezvous r)
 newRendezvous = liftM Rendezvous newChan


 accept :: Rendezvous r ->
 Session (Cap () r) () a -> IO a
 accept (Rendezvous c) (Session f) = do
 nc <- newUChan

 writeChan c nc
 f nc


 request :: Dual r r’ => Rendezvous r ->
 Session (Cap () r’) () a -> IO a
 request (Rendezvous c) (Session f)
 = readChan c >>= f

Listing 23: Haskell implementations of Rendezvous, newRendezvous, accept, and request.

by a preprocessor, which works like the standard do, but for indexed monads.
Ensuring protocol compatibility is handled by the Dual type class shown in Listing 22,

where we are also showing the implementation of Dual for :!:. The remaining instances are
analogous. Connecting end-points is handled by the accept and request functions, shown
in Listing 23. A Rendezvous is used to initialize the session between two functions using
accept and request, and as we can see, duality is enforced by the constraint in request that
the two protocols r and r’ must be dual.

We show an implementation of a server satisfying the type for the recursive arithmetic
server defined above:

server = enter >>> loop where
loop = offer (ixdo

n <- recv
m <- recv
send (n + m)
zero
loop)

(offer (ixdo
n <- recv
send (-n)
zero
loop)

close)

The example demonstrates how the use of the ixdo notation allows the code to be succinct,
and Haskell’s type inference is powerful enough that we do not have to write the types
explicitly. Note that handling a chain of branches quickly becomes cumbersome, because
there is little to alleviate the right-ward drift.

In addition to introducing and demonstrating their session types library, [18] also formal-
izes their system and prove that the type system prevents threads from receiving unexpected

4 SESSION TYPES 31

 protocol placeOrder {
 begin.
 ![
 !<String>.
 ?(Double)
]*.
 !{
 ACCEPT: !<Address>.?(Date),
 REJECT:

 }
 }

Listing 24: Protocol declaration in SessionJ.

types, despite the reliance on unsafe, untyped channels.
This concludes our brief overview of the implementation of session types in Haskell de-

scribed in [18].

4.4 Session Types in Object-Oriented Programming

We also looked at implementations of session types in object-oriented programming languages,
and this section describes one such effort, SessionJ, that brings session types to Java. Aside
from the core session-typed channels, SessionJ features asynchronous message passing, session
delegation, session subtyping and failure handling [19].

The main focus of SessionJ is to bring session types to distributed computing, and to
achieve this, the underlying communication primitives are based on sockets and the system
features both static and dynamic session type checking. The authors demonstrate that the
run-time overhead is low.

Session types, called protocols, are declared in a protocol block in which a special session
types DSL is accepted. The SessionJ compiler then translates the protocol to corresponding
Java constructs and performs a dedicated type-checking phase where it checks that channel
values are used linearly. The SessionJ frontend produces a valid Java program that can be
compiled with the normal Java compiler. An example protocol declaration is shown in List-
ing 24. The send and receive operations are denoted by !<type> and ?(type) respectively.
Multi-way labelled branching is also supported by the !{..} and ?{..} constructs and the
branch labels are translated to run-time values that can be used to select a branch. The
branching constructs can also be thought of as a distributed switch-statement.

The notable difference between the session type theory, the Haskell version and SessionJ
are the constructs for iteration. In both the session type theory and the Haskell implemen-
tation, iteration is implemented by recursion. In SessionJ iteration is implemented by the
mutually dual constructs ![..]* and ?[..]*, where [..]* expresses that the contained inter-
actions may be iterated zero or more times. The construct ![..]* controls the iteration and
?[..]* follows the decision, and they can together be thought of as a distributed while-loop.

Channel end-points, called session sockets, are run-time entities over which all session-
typed communication takes place. Session sockets are instantiated with a pre-defined proto-
col, and all interactions are implemented as methods on a session socket, i.e. the method send

and recv implement ! and ? respectively, outbranch implements branch selection, inbranch

implements label branching, and outwhile and inwhile implement active and passive iteration.
Before a session can be initiated, the two communicating parties exchange protocols

and verify that their protocols are compatible. Only then is the session initiated and session
sockets obtained. Because protocol compatibility is checked at run-time, protocol mismatches
can occur, which produces an error. To handle a session failure situation, SessionJ provides
an extended try-catch mechanism.

4 SESSION TYPES 32

SessionJ is an advanced implementation of session types in terms of features and robust-
ness. Its main drawback is that it is a language extension requiring its own special compiler,
but this design choice also enables features that would otherwise not be possible in regular
Java. The syntax extensions mesh well with the syntax of Java and handling session-typed
communication is not a great burden for the programmer.

5 SESSION TYPES IN RUST 33

5 Session Types in Rust

This chapter describes our implementation of a session type library in Rust, that we will
to use to solve the communication problems in Servo described in Section 3.2. Specifically,
we want to be able to translate the current communication schemes in Servo, which rely on
enum types and single-typed channels, to a scheme which relies on session-typed channels for
inter-process communication. The library should be able to decide at compile-time, whether
or not a given program adheres to the protocols specified, and if that is the case, the program
should not fail due to communication

errors. Section 5.1 describes the overall design of session-types, Section 5.2 describes
the implementation in detail. Section 5.3 argues that our implementation is safe. Section 5.4
gives examples and motivates useful extensions to the session-types library. Section 5.5
outlines an alternative implementation of session types that we worked on initially. Finally,
Section 5.6 discusses alternative approaches to the design of session-types, while Section 5.7
gives an short evaluation of our library.

5.1 Design

We have modelled our library after the Haskell implementation in [18]. This design has the
benefit that it can be expressed entirely in Rust itself, without any needs for compiler plug-
ins, preprocessors or other language extensions. It simply requires a parametric polymorphic,
typed language, which Rust happens to be. Also in terms of constructs exposed to the user,
we decided to follow the Haskell implementation closely; we provide the Send (!), Recv (?),
Offer (&), and Choose (⊕) constructs. Unlike the original formulation of session types, we
are not using labels but binary choice to branch between different paths in our protocol.
The two methods are equally powerful (labelled branches allow the user to choose between
arbitrary number of branches, but we can emulate an arbitrary number of choices by chaining
binary branches), but they are not equivalent (we can freely reorder labels in a &; for our
constructs, the order of branches matters). Although labelled branching seems inherently
more descriptive and user-friendly, we have chosen to use binary branches to keep the im-
plementation simple.6 Additionally, to provide recursion, we rely on the Rec and Var type
constructs, which together with Peano numbers (S and Z) allows one to express recursion.

For example:

µt.&{fst : ![nat]; t,

snd : ?[nat]; end}

becomes

Rec<Offer<Send<u8, Var<Z>>,
Recv<u8, Eps>>>

Note that, like recursion in traditional session types, the recursive construct Rec does not
have any notion of a “next” action [20]. We considered an alternative construct for iteration
that included an explicit “next action” inspired by the iteration constructs, ![..]* and ?[..]*,
from SessionJ [19]. This approach is discussed in detail in Section 5.6.

5.2 Implementation

This section describes the implementation of the Rust library session-types. We will first
describe how the different session types are encoded, then how untyped channels are im-
plemented, and finally how the functions for using the channels are implemented, using the
untyped channels in a safe manner.

6See Section 5.4.2 for a description of an attempt to use macros to ease the use of binary branches.

5 SESSION TYPES IN RUST 34

 /// End of communication session (epsilon)
 #[allow(missing_copy_implementations)]
 pub struct Eps;


 /// Receive ‘A‘, then ‘P‘
 pub struct Recv<A, P> (PhantomData<(A, P)>);


 /// Send ‘A‘, then ‘P‘
 pub struct Send<A, P> (PhantomData<(A, P)>);



 /// Active choice between ‘P‘ and ‘Q‘
 pub struct Choose<P, Q> (PhantomData<(P, Q)>);


 /// Passive choice (offer) between ‘P‘ and ‘Q‘
 pub struct Offer<P, Q> (PhantomData<(P, Q)>);


 /// Enter a recursive environment
 pub struct Rec<P> (PhantomData<P>);


 /// Recurse. ‘N‘ indicates how many layers of the recursive environment we
 /// recurse out of (encoded as Peano numbers)
 pub struct Var<N> (PhantomData<N>);


 /// Peano numbers: Zero
 #[allow(missing_copy_implementations)]
 pub struct Z;


 /// Peano numbers: Succ
 pub struct S<N> (PhantomData<N>);

Listing 25: Rust structs used to represent session types.

The code in Listing 25 shows the encoding of session types in Rust’s type system. Eps

is the empty protocol, and indicates that communication between the two processes has run
to completion and the channel can be closed. The structs Send<A, P> and Recv<A, P> denote
sending and receiving messages of type A, before continuing with the protocol P. Choose<P, Q>

and Offer<P, Q> represent active and passive choice respectively, between protocols P and Q.
Rec is used to enter a recursive environment, pushing the current protocol onto a protocol
stack, and the structs Z and S<N> are used as arguments to Var<V>, indicating how many
protocols to pop from the stack before recursing. For example, Var<S<S<Z>>> indicates that
we are to pop two protocols from the stack before recursing into the third one. We shall
see how this works in detail later. The PhantomData field in the structs with generic type
parameters is required to mark phantom types. Rust does not permit unused type parameters
and PhantomData is provided to explicitly mark phantom types.

We encode duality in terms of a trait with an associated type. Listing 26 shows the decla-
ration of the trait HasDual and how it is implemented for the various session type constructs.
The HasDual trait has a single entry: an assocaited type called Dual which represents the dual
type for the implementing type. For example, the Dual type of Send<A, P> is Recv<A, P::Dual>,
where P must also implement HasDual. The use of associated types allows us to elegantly
express our requirements for duality. Additionally, the trait and the implementations are
marked as unsafe to indicate that users should not implement HasDual themselves. Doing so
potentially violates the session type guarantees that form the basis of our library.

An earlier implementation, which we used for a few months, used tupled type parameters
instead of associated types (see Listing 27). This was directly inspired the Haskell imple-

5 SESSION TYPES IN RUST 35

 pub unsafe trait HasDual {
 type Dual;
 }


 unsafe impl HasDual for Eps {
 type Dual = Eps;
 }


 unsafe impl <A, P: HasDual> HasDual for Send<A, P> {
 type Dual = Recv<A, P::Dual>;
 }


 unsafe impl <A, P: HasDual> HasDual for Recv<A, P> {
 type Dual = Send<A, P::Dual>;
 }


 unsafe impl <P: HasDual, Q: HasDual> HasDual for Choose<P, Q> {
 type Dual = Offer<P::Dual, Q::Dual>;
 }


 unsafe impl <P: HasDual, Q: HasDual> HasDual for Offer<P, Q> {
 type Dual = Choose<P::Dual, Q::Dual>;
 }


 unsafe impl HasDual for Var<Z> {
 type Dual = Var<Z>;
 }


 unsafe impl <N> HasDual for Var<S<N>> {
 type Dual = Var<S<N>>;
 }


 unsafe impl <P: HasDual> HasDual for Rec<P> {
 type Dual = Rec<P::Dual>;
 }

Listing 26: The HasDual trait and impls.

mentation discussed earlier, but changes to the coherence inference scheme in Rust made it
impossible to infer the appropriate types. Our current encoding using associated types much
clearer conveys the meaning of duality: For a given type, there exists a uniquely defined dual
type that can be associated with this type.

To demonstrate how the HasDual trait is used we implement corresponding versions of the
session initiation functions accept and request from [23]. accept can be viewed as the server-
side function, whose responsibility is to initiate a session between the caller and a process
requesting a connection. The code for accept is shown in Listing 28. accept produces two
end-points for a session-typed channel, passes one of the end-points over a provided channel
and returns the other. The types are specified as follows: accept requires a generic argument
P implementing the trait HasDual. The type of the channel passed over the channel is then
Chan<(), P::Dual> and the returned channel has type Chan<(), P>. Thus duality is enforced at
session initiation. The request function only receives a session-typed channel on a provided
Receiver and does not have to worry about duality.

Interacting with a channel and taking steps in the protocol is implemented as methods
matching on the types defined Listing 25. Listing 29 shows the implementations of methods
close, send, and recv. Each method is specialized, such that it can only be called on channels

5 SESSION TYPES IN RUST 36

 /// Indicates that two protocols are dual
 pub unsafe trait Dual: PhantomFn<Self> {}


 unsafe impl <A, P, Q> Dual for (Send<A, P>, Recv<A, Q>)
 where (P, Q): Dual {}

Listing 27: Our previous approach for handling duality using tupled type parameters.

 pub fn accept<P: HasDual>(tx: Sender<Chan<(), P::Dual>>) -> Option<Chan<(), P>> {
 let (tx1, rx1) = channel();
 let (tx2, rx2) = channel();


 let c1 = Chan(tx1, rx2, PhantomData);
 let c2 = Chan(tx2, rx1, PhantomData);


 match tx.send(c1) {
 Ok(_) => Some(c2),

 _ => None
 }
 }

Listing 28: The accept function to initiate a session.

with the appropriate protocol. For example, close can only be called on a channel where
communication has run to completion, i.e. its protocol is Eps, regardless of what the environ-
ment is. Similarly, we can only call send on a channel where the next step in the protocol is
Send<A, P>, returning a channel with a session of type P.

On calling recv on a channel of type Chan<E, Recv<A, P>>, we read a value of type A using
the unsafe_read_chan function, and then transmute the channel into a Chan<E, P>, indicating
that we have received a value of type A and are now ready to proceed with the protocol
indicated by P. Using transmute is safe only because we have actually read a value from the
channel.

Overall the operations available on channels in different stages of a protocol may be
described by the following “steps”:

Chan<E, Send<A, P>> −→ Chan<E, P> send()

Chan<E, Recv<A, P>> −→ (Chan<E, P>, A) recv()

Chan<E, Choose<P, Q>> −→ Chan<E, P> sel1()

Chan<E, Choose<P, Q>> −→ Chan<E, Q> sel2()

Chan<E, Offer<P, Q>> −→ Result<Chan<E, P>, Chan<E, Q>> offer()

Chan<E, Rec<P>> −→ Chan<(P, E), P> enter()

Chan<(P, E), Var<Z>> −→ Chan<(P, E), P> zero()

Chan<(P, E), Var<S<N>>> −→ Chan<E, Var<N>> succ()

Chan<E, Eps> −→ () close()

For example, the method offer is only available when the next step in the protocol is an
Offer type. Furthermore, it is the only method available on a channel of that type, and it can
only transform the channel into either a Chan<E, P> or Chan<E, Q> depending on the choice
communicated by the other party.

recv could also have been written using only safe code, as shown in Listing 30. We note
that our use of transmute is safe, because we are converting phantom types with no runtime

5 SESSION TYPES IN RUST 37

 impl<E> Chan<E, Eps> {
 /// Close a channel. Should always be used at the end of your program.
 pub fn close(self) {
 // Consume ‘c‘
 }
 }


 impl<E, P, A: marker::Send + ’static> Chan<E, Send<A, P>> {
 /// Send a value of type ‘A‘ over the channel. Returns a channel with

 /// protocol ‘P‘
 pub fn send(self, v: A) -> Chan<E, P> {
 unsafe_write_chan(&self, v);
 unsafe { transmute(self) }
 }
 }


 impl<E, P, A: marker::Send + ’static> Chan<E, Recv<A, P>> {
 /// Receives a value of type ‘A‘ from the channel. Returns a tuple
 /// containing the resulting channel and the received value.
 pub fn recv(self) -> (Chan<E, P>, A) {
 let v = unsafe_read_chan(&self);
 (unsafe { transmute(self) }, v)
 }
 }

Listing 29: Rust implementations of close, send, and recv.

 impl<E, P, A: marker::Send + ’static> Chan<E, Recv<A, P>> {
 /// Receives a value of type ‘A‘ from the channel. Returns a tuple
 /// containing the resulting channel and the received value.
 pub fn recv(self) -> (Chan<E, P>, A) {
 let v = unsafe_read_chan(&self);
 let Chan(tx, rx, _) = self;
 (Chan(tx, rx, PhantomData), v)
 }
 }

Listing 30: An alternative Rust implementation of recv.

representation, and not re-interpreting an integer as an exotic data structure. Transmuting
the channel type also conveys the idea that we are operating on the same channel.

 /// A session-typed channel. ‘P‘ is the protocol and ‘E‘ is the environment,
 /// containing potential recursion targets
 pub struct Chan<E, P> (Sender<Box<u8>>, Receiver<Box<u8>>, PhantomData<(E, P)>);

Listing 31: The Rust implementation of a session channel.

Listing 31 shows the definition of Chan, a session-typed channel. In short, a channel is
a type that takes two type parameters as arguments: an environment E and a protocol P,
both marked as phantom types. The channel contains both a Sender and a Receiver, which
facilitate the communication between the two processes.

Listing 32 shows the code for unsafe_read_chan and unsafe_write_chan, which are used by
recv and send. It might seem strange at first that we have to box the value we are sending, but
it is required to make sure that all the values we send have the same size. If a Chan contained
a Sender<u8>, we could only transmute it to a Sender of the same size, e.g. a Sender<i8>, but

5 SESSION TYPES IN RUST 38

 fn unsafe_write_chan<A: marker::Send + ’static, E, P>
 (&Chan(ref tx, _, _): &Chan<E, P>, x: A)
 {
 let tx: &Sender<Box<A>> = unsafe { transmute(tx) };
 tx.send(Box::new(x)).unwrap();
 }


 fn unsafe_read_chan<A: marker::Send + ’static, E, P>
 (&Chan(_, ref rx, _): &Chan<E, P>) -> A

 {
 let rx: &Receiver<Box<A>> = unsafe { transmute(rx) };
 *rx.recv().unwrap()
 }

Listing 32: Implementations of unsafe_write_chan and unsafe_read_chan.

not a Sender<u64>. A Box is an owned unique pointer to a piece of memory on the heap,
and boxes always have the same size, even though the piece of memory it points to might
be of varying sizes. To send a value, we therefore box it first (copy it to the heap), and,
consequently, to receive a value, we must then unbox it (copy it from the heap). The choice
of u8 in Sender<Box<u8>> is an arbitrary one and does not have any effect on the program.

One will also note that we are using the unwrap method on the result of sending and
receiving. As a result, unsafe_write_chan will panic if the receiver has been disconnected.
However, the whole point of our session type library is to guarantee that two processes have
compatible communication patterns, and so we assume that this will never happen. We will
address this in greater detail in Section 5.3.

 impl<E, P, Q> Chan<E, Offer<P, Q>> {
 /// Passive choice. This allows the other end of the channel to select one
 /// of two options for continuing the protocol: either ‘P‘ or ‘Q‘.
 pub fn offer(self) -> Result<Chan<E, P>, Chan<E, Q>> {
 let b = unsafe_read_chan(&self);
 if b {
 Ok(unsafe { transmute(self) })
 } else {
 Err(unsafe { transmute(self) })

 }
 }
 }


 impl<E, P, Q> Chan<E, Choose<P, Q>> {
 /// Perform an active choice, selecting protocol ‘P‘.
 pub fn sel1(self) -> Chan<E, P> {
 unsafe_write_chan(&self, true);
 unsafe { transmute(self) }
 }


 /// Perform an active choice, selecting protocol ‘Q‘.
 pub fn sel2(self) -> Chan<E, Q> {
 unsafe_write_chan(&self, false);
 unsafe { transmute(self) }
 }
 }

Listing 33: Rust implementations of offer, sel1, and sel2.

5 SESSION TYPES IN RUST 39

Listing 33 shows the code for offer, sel1, and sel2. sel1 and sel2 perform the active
choice and communicate their choice by sending a boolean, indicating if protocol P or Q is
to be used. offer then receives that boolean; returning the channel in a Ok or Err wrapper.
Note that Ok and Err do not carry their usual Rust meaning here, i.e. returning an Err does
not imply that an error has occured. Instead we can think of Result as binary choice, similar
to the Either type in Haskell (Left and Right). Indeed, we could have implemented our own
Either type for this, but it is unnecessary and there is a lot of infrastructure in place for
Result already that users might want to take advantage of.

At this point it should be noted that the session types in session-types are not equivalent
to traditional session types, even though we can express programs that have the same semantic
meaning as any program written in L. For example, consider the type of the arithmetic server
from Section 4.2:

&{add : ?[nat]; ?[nat]; ![nat]; end, neg : ?[nat]; ![nat]; end}

which we can express in Rust as:

Offer<Recv<usize, Recv<usize, Send<usize, Eps>>>,
Recv<usize, Send<usize, Eps>>>

but the following translation is equally valid:

Offer<Recv<usize, Send<usize, Eps>>,
Recv<usize, Recv<usize, Send<usize, Eps>>>>

However, the two types are not equivalent: They are not equal in Rust’s type system and the
server implementing the two different types would look differently, just like a client talking to
the first server would not be able to talk to the second one. In L, by contrast, changing the
order of the arguments to a & or a ⊕ does not change the set of valid implementations, as the
types would still be equivalent. This does not mean that the session types in session-types

are less expressive, just that order matters, and the user cannot shuffle arguments to Choose

and Offer around as they please, without changing their implementations.
Similarly, the Rust type system does not allow us to encode the equi-recursive view of

session types that L has. The result is that a type such as

Rec<Send<T, Var<Z>>>

is not considered equivalent to

Send<T, Rec<Send<T, Var<Z>>>>

for some sendable type T, but the second type corresponds exactly to a single expansion of
the Rec. Again, we do not lose expressiveness, we just lose a bit of flexibility.

Listing 34 shows the code for the methods enter, zero, and succ, which are used to
facilitate recursion. As we can see, the implementations themselves are not particularly
interesting, but the type machinery is. Inspired by the Haskell implementation described in
4.3 we use de Bruijn indices to refer to the different recursion scopes. Entering a recursive
scope, by using enter, pushes the current protocol to the environment stack so that we can
later retrieve it again using succ which pops scopes from the stack and zero which enters the
recursion scope at the top of the environment stack.

Finally, to create session channels, we provide the function session_channel, as shown in
Listing 35. The interesting part here is the types of the returned channels. The type param-
eter P is a session type, and we require that it implements HasDual to enforce compatibility
at session initialization.

This concludes our description of our Rust implementation of session types. Listing 36
shows a small example client-server program, where the client sends a u64 and then exits.
The server receives the number, closes its channel and prints the received number.

5 SESSION TYPES IN RUST 40

 impl<E, P> Chan<E, Rec<P>> {
 /// Enter a recursive environment, putting the current protocol on the
 /// top of the environment stack.
 pub fn enter(self) -> Chan<(P, E), P> {
 unsafe { transmute(self) }
 }
 }


 impl<E, P> Chan<(P, E), Var<Z>> {
 /// Recurse to the environment on the top of the environment stack.
 pub fn zero(self) -> Chan<(P, E), P> {
 unsafe { transmute(self) }
 }
 }


 impl<E, P, N> Chan<(P, E), Var<S<N>>> {
 /// Pop the top environment from the environment stack.
 pub fn succ(self) -> Chan<E, Var<N>> {
 unsafe { transmute(self) }
 }
 }

Listing 34: Rust implementations of enter, zero, and succ.

 /// Returns two session channels
 pub fn session_channel<P: HasDual>() -> (Chan<(), P>, Chan<(), P::Dual>) {
 let (tx1, rx1) = channel();
 let (tx2, rx2) = channel();


 let c1 = Chan(tx1, rx2, PhantomData);
 let c2 = Chan(tx2, rx1, PhantomData);


 (c1, c2)
 }

Listing 35: Rust implementations of session_channel.

5.3 Safety

In this section we will argue why and to what extent session-types guarantees safe commu-
nication patterns.

What do we mean when we talk about safe communication patterns? Of course, we cannot
in general guarantee that a program will never fail, or that it will halt at some point. What
we are trying to achieve is a guarantee that two processes are compatible “in the sense that
an interaction between the two will not terminate prematurely because of a mismatch in the
expectations of one of the partners” [24]. For example, if one side expects to receive a string,
the other side will never send a value of any other type, nor will it expect any other action
to take place, like recursion or choice. It may be that the other side fails to ever take action
because of exceptional behavior (panics or infinite loops, for example), but if an action is
ever taken (and the user is only using safe code), we guarantee that it is the expected action.

We will not give a formal proof for our claims, partly because Rust has no formal specifi-
cation, but we will argue for our claims in terms of Rust’s informal semantics. We will focus
on our library-provided methods and functions, treating session-types as an embedded DSL
for dealing with sessions. Later we will discuss how certain Rust functions, like drop, affects
our claims.

5 SESSION TYPES IN RUST 41

 fn client(n: u64, c: Chan<(), Send<u64, Eps>>) {
 c.send(n).close()
 }


 fn server(c: Chan<(), Recv<u64, Eps>>) {
 let (c, n) = c.recv();
 c.close();
 println!("Received {}", n);
 }



 fn main() {
 let n = 42;
 let (c1, c2) = session_channel();


 let s1 = scoped(move || client(n, c1));
 let s2 = scoped(move || server(c2));


 s1.join();
 s2.join();
 }

Listing 36: Demonstrating send, recv and session_channel.

First of all, we wish to argue that the only way the user can send any data through a
session channel, is by using either send, sel1, or sel2. The underlying Sender is encapsulated
in the Chan, and is not publicly accessible, meaning that it can only be accessed from within
session-types itself. It is crucial for our safety claims that our API does not expose references
to the inner fields of a Chan to the user. From the function definitions above, we can see that
the only place where the Sender is accessed is in unsafe_write_chan, which is not publicly
accessible either. That function, in turn, is only called from the public functions send, sel1,
and sel2. Hence, we can see that all communications sent through a session channel must go
through either send, sel1, or sel2.

Furthermore, it is clear that, given a channel c of type Chan<E, Send<A, P>>, send will only
ever send a value of type A before returning a channel of type Chan<E, P>. Similarly, given
a channel c of type Chan<E, Choose<P, Q>>, sel1 and sel2 will only ever send a value of type
bool, whereafter they will return channels of type Chan<E, P> and Chan<E, Q>, respectively.

From this, we can gather than it is only possible to send values through a channel via
send, sel1, and sel2, and they are well-behaved, in the sense that they send the types that we
expect them to, and they progress the session type of the session. We can use an analogous
argument to show that the only way to receieve values through a channel is via recv and
offer, that they are well-behaved, and that they progress the session type.

By inspecting the rest of the functions given above, we can also see that send is the
only function that takes a Chan<E, Send<A, P>>, for some E, A, and P as an argument,
and the only way to use the channel is therefore to progress it by calling send. Analo-
gously, Chan<E, Recv<A, P>> can only be used by recv, Chan<E, Offer<P, Q>> by offer, and
Chan<E, Choose<P, Q>> by either sel1 or sel2.

Now, a session always consists of exactly two endpoints that we call channels; the only way
we can get a session-typed channel is through the function session_channel, which returns
two channels. Additionally, through the use of the HasDual trait, session_channel ensures
that the types the channels are dual. Because the dual of a session type is uniquely defined,
there is only one possible dual session type s′ for any given session type s, and the HasDual

trait reflects this. Thus—assuming that channels are synchronous—whenever session s is in
the state Chan<E, Send<A, P>>, session s′ will be in the state Chan<E, Recv<A, P::Dual>> and

5 SESSION TYPES IN RUST 42

so on. The channels we use in session-types are not synchronous, but as [24] has shown,
this is not a problem, session s′ will merely arrive at the state Chan<E, Recv<A, P::Dual>> at
a later time.

We also have take aliasing into account, as discussed in Section 4. To address this, we
can leverage Rust’s move semantics by ensuring that Chan does not implement neither Clone

nor Copy. For example, consider the following piece of code:

let (c1, c2) = session_channel::<Send<u8, Eps>>();
let c3 = c1;
c1.send(42u8).close();
c3.send(43u8).close();
let (c2, n) = c2.recv();
c2.close();

If Chan values could be cloned, this would be a valid program, that violates our session
type guarantees. c1 has the type Chan<(), Send<u8, Eps>>, so it should only be possible to
perform one send operation on it. However, the underlying Sender would be sending two
values, violating the protocol. Because of move semantics the assignment let c3 = c1 moves
the value c1 and prevents further use of it.

We have now stated three things: We can only send and receive values through a channel
using the provided methods, send, recv, offer, sel1, and sel2; when sending or receiving
anything through a channel, it will have the type indicated by the type parameters to the
channel, i.e. sending on a channel with protocol Send<A, P> for some A and P, the value we
are sending will have type A; and any time we have a session channel endpoint s with type P,
there will be exactly one corresponding dual endpoint s′ with type P::Dual. This means that
if a session channel is used, it will be used correctly, and the program will be well-behaved.
We say that our session types are type safe (or sound).

However, we cannot claim that our session-typed channels will never fail, as a program
may drop a channel at any time. It is therefore up to the user to ensure that all session-typed
channels are closed properly with close.

5.4 Examples and Extensions

To illustrate how to use session-types, and to exhibit some use cases where we found a need
for some additional tooling, we now show and discuss some examples that use session-types,
as well as some of the extra mechanics that we have introduced. Section 5.4.1 shows how
we have implemented a selection mechanism for choosing among multiple receiving channels.
Section 5.4.2 describes an attempt to solve the problem of handling many Offer branches.
Section 5.4.3 demonstrates how we can safely handle an unknown number of clients with
session types. Finally, Section 5.4.4 shows how to solve an interesting concurrency problem,
called the Santa Claus problem, using session types.

In addition to the demonstrations and showcases we will discuss below, we have also
implemented a variety of other examples using session types which we wont cover in depth.
The examples come from a variety of other papers, and we have implemented our own versions
using session-types. These examples include: the reentrant polygon clipping algorithm
from [25], which has also been implemented in [18]; the ATM example from [23], both in
the normal version and in a version that uses delegation to handle the contact between the
user and the bank; the POP3 server from [2]; a variety of echo servers and examples that
demonstrate the basic functionality of our library; and the ticket ordering system from [19].

5.4.1 Selecting Over Multiple Channels

It is a common use-case for a process to listen on multiple channels. Traditional CSP provides
a choice operator allowing a process to act upon a selection of communications [26], and

5 SESSION TYPES IN RUST 43

is implemented in a number of programming languages, notably in occam [27] as the ALT

construct, in Alef [28] as the alt statement and in Go [29] as the select statement. The
Rust standard library also provides a Select structure for listening on multiple channels.
Contrary to other programming languages, in Rust the provided concurrency mechanisms
are implemented in the standard library rather than provided as a language feature.

In our implementation of the Santa Claus problem (see Section 5.4.4) we discovered a
need for a selection construct, which led to the design of a structure a structure similar to
Select called ChanSelect.

We cannot directly use the Select structure for the reason that we cannot safely expose
the innards of our Chan structure (as mentioned earlier). Instead we provide an API similar
to that of Select, but with minor differences to ensure safety.

The declaration of ChanSelect is shown in Listing 37. Channels are added to the structure

 struct ChanSelect<’a, T> {
 chans: Vec<(&’a, Chan<(), ()>, T>)
 }

Listing 37: The ChanSelect structure.

and borrowed by the structure until its destruction. This is to prevent channels from being
consumed while they are referenced in the structure. The regular Select does not implement
such a limitation. The type parameter T indicates a value to return for the selected channel.
This becomes useful later when we put session-typed channels to use in Servo (see Section 6).

Channels are added to a ChanSelect structure by means of an add method, which is
shown in Listing 38. We restrict ourselves to accept only channels whose next action in
their protocol is Recv. Internally, the protocols of the added channels are ignored. This
is necessary to be able to add channels with different subsequent protocols to the same
ChanSelect. The transmute function is used to coerce the protocol phantom type to (). We
argue that discarding the protocol internally is safe, because the structure can only accept
channels whose next action is Recv (by the declaration of add).

 impl<’a, T> ChanSelect<’a, T> {
 fn add<E, P, A: marker::Send>(&mut self,
 chan: &’a Chan<E, Recv<A, P>>,
 ret: T)
 {
 self.chans.push((unsafe { transmute(chan) }, ret));
 }
 }

Listing 38: Adding a channel to the selection structure.

The borrowed references to channels are stored and their lifetimes are tied to the lifetime of
the ChanSelect. The ChanSelect must prevent the owner of a channel from moving the value
while it is added, and binding the lifetime of the borrows to the lifetime of the structure
achieves exactly that.

To find the next channel ready to receive, the wait method is invoked. The declaration
of wait is:

fn wait(self) -> T

Calling this method consumes the ChanSelect structure and returns the value of type T as-
sociated with the selected channel. Once a channel is selected, we want to end all borrowed
references to it to allow it to be consumed. Because the lifetime of the borrow is tied to

5 SESSION TYPES IN RUST 44

the lifetime of the ChanSelect structure, we must drop the whole structure (thus ending all
borrowed references). It is for this reason that wait takes a owned self parameter. Arguably
a mutably borrowed reference (&mut self) suffices for wait, but declaring it to be consuming
better conveys the intent of the method. When calling wait, internally a Select structure is
constructed with all the Receivers contained in the borrowed channels. Each Receiver added
to Select receives an ID, which is then mapped to the channel’s associated return value.

The Rust standard library also provides a convenient select! macro that allows for a more
ergonomic use of Select without explicitly having to construct a Select and add Receivers.
We provide a similar macro called chan_select! that internally constructs a ChanSelect adding
all the referenced channels:

chan_select! {
(c, n) = c1.recv() {

println!("Received integer: {}", n);
c.close();

}
(c, s) = c2.recv() {

println!("Received string: {}", s);
c.close();

}
}

where c1 and c2 are Chan types with the protocols Recv<u8, Eps> and Recv<String, Eps> re-
spectively. Inside the macro the referenced channels must be rebound to new names, because
the macro expands to a call to recv on the selected channel, thereby moving the value.

As a final note on ChanSelect we expanded it to also support channels with protocols
whose next action are Offer. Internally the first action of the offer method is to receive
a boolean indicating the branch to be chosen, so the interface naturally extends to include
channels that can wait to receive the selected branch.

Introducing a structure such as ChanSelect has the potential to introduce memory safety
“holes”, i.e. ways to use the API to cause memory errors. Working on the design, we focused
heavily on ensuring the safety of the API and we have argued informally that it is.

5.4.2 Selecting Among Multiple Branches

During our design process, we implemented a version of the arithmetic server example
from introduced in Section 4. The server initially offered two branches, one for an addition
operation and one for a negation operation. We extended the arithmetic server with two new
operations: sqrt and eval. The former receives a floating point number and sends back its
square root, and the latter receives a function and an argument for the function and returns
the result of evaluating the function with the argument. The session type for the extended
arithmetic server looks as follows:

type Srv =
Offer<Eps, // close
Offer<Recv<i64, Recv<i64, Send<i64, Var<Z>>>>, // add
Offer<Recv<i64, Send<i64, Var<Z>>>, // neg
Offer<Recv<f64, Choose<Send<f64, Var<Z>>, Var<Z>>>, // sqrt

Recv<fn(i64) -> bool, Recv<i64, Send<bool, Var<Z>>>>>>>>; // eval

If we use match statements to handle the Srv protocol the result can look as demonstrated
in Listing 39. To address the right-wards drift and unclutter the code, we provide an offer!

macro that can handle a list of Offers. As a convention we only handle chains where the next
Offer is in the second branch.

Besides handling right-wards drift, the syntax in offer! also allows the programmer to
label the different branches. The labels have no semantic meaning, but can be used to provide

5 SESSION TYPES IN RUST 45

 // c: Chan<(Srv, ()), Srv>
 match c.offer() {
 Ok(c) => {
 // close
 }
 Err(c) => match c.offer() {
 Ok(c) => {
 // add
 }

 Err(c) => match c.offer() {
 Ok(c) => {
 // neg
 }
 Err(c) => match c.offer() {
 Ok(c) => {
 // sqrt
 }
 Err(c) => {
 // eval
 }
 }
 }
 }
 }

Listing 39: Handling the Srv protocol.

 // c: Chan<(Srv, ()), Srv>
 offer! { c,
 Close => {
 // close
 },
 Add => {
 // add
 },
 Negate => {

 // neg
 },
 Sqrt => {
 // sqrt
 },
 Eval => {
 // eval
 }
 }

Listing 40: Using the offer! macro.

the reader with a name for the branch. The expansion of the macro is tightly bound to the
structure of the session type, so the branches cannot be swapped around freely, they must
be handled in the order they appear in the type. Listing 40 shows how the arithmetic server
can use the offer! macro give an overview of its branches.

We have found the offer! macro useful in providing an overview of many branches, not
only does it resemble a match statements, it also allows meaningful labels to be added.

5.4.3 An Unknown Number of Clients

First, we would like to examine how one might write a server that waits for an unknown
number of clients to establish a connection, then receives a number and adds 42 to that
number and returns the sum, unless the sum is above 255, in which case the addition overflows
and the server indicates thus.

In session-types, the protocol for the clients, and the code for the client- and server-
handler could be written like in Listing 41. However, we run into problems when we try to
connect the two. We cannot create a Chan type and share it between clients, because Chans
cannot be copied or cloned. It is conceivable that we could put such a channel in some sort
of shared reference counted structure, but would not know when we are done using it, and
we might not be able to properly close it. Instead, we can let the clients create the session-
typed channels themselves and have a Sender<Chan<(), Server>> that allows them to send one
endpoint to the server. Since Senders can be cloned, we are free to give one to each of the
clients, while the server owns the Receiver. In code, it looks like Listing 42.

Note, that we are using a bit of Rust magic to make this happen: Most notably, Senders
are reference counted, and once there are no more references to a Sender, the corresponding
Receiver will Err, which we use to stop the loop in server. This only works, however, because
of the explicit drop in the main function; without it, server would hang.

In conclusion, we can say that this is a useful pattern, and it turns out that we can express

5 SESSION TYPES IN RUST 46

 type Server = Recv<u8, Choose<Send<u8, Eps>, Eps>>;
 type Client = Send<u8, Offer<Recv<u8, Eps>, Eps>>;


 fn server_handler(c: Chan<(), Server>) {
 let (c, n) = c.recv();
 match n.checked_add(42) {
 Some(n) => c.sel1().send(n).close(),
 None => c.sel2().close(),
 }

 }


 fn client_handler(c: Chan<(), Client>) {
 let n = random();
 match c.send(n).offer() {
 Ok(c) => {
 let (c, n2) = c.recv();
 c.close();
 println!("{} + 42 = {}", n, n2);
 },
 Err(c) => {
 c.close();
 println!("{} + 42 is an overflow :(", n);
 }
 }
 }

Listing 41: The Server and Client types, as well as the implementation of the client and handler function.

it in a straightforward manner using our session type constructs and Rust’s standard library
functions.

5.4.4 The Santa Claus Problem

The Santa Claus problem appeared is a concurrency exercise that first appeared in [1]. Santa
Claus sleeps in his hut in the North Pole and can be awakened either by his elves when they
need assistance with their toy-making or by his nine reindeer back from holiday and ready
to deliver presents. To avoid disturbing Santa all the time the elves must come in groups of
three, so the first elf in need of assistance will wait for two others to join him, before waking
up Santa. While a group of elves are talking to Santa, a new group may form outside his
door, but they cannot go in until the first group has exited. All nine reindeer must be back
before waking up Santa, and because the reindeer are antsy and want to return on holiday
in the tropics they must take precedence if a group of elves is ready at the same time.

We implement a solution of the Santa Claus problem using our session types library. The
original solution uses semaphores and mutexes, but our approach is slightly different, because
we want to showcase how session types can be used to structure the communication among
the different parties.

An elf works and interacts with Santa using a single channel. When in need of assistance
the elf sends a unit value on his channel to signal that he is ready and blocks immediately for
a confirmation that Santa is ready to talk. Talking to Santa is represented as a send (the elf
asks a question) followed by a receive (Santa gives an answer). This protocol, Elf, is written
as:

type Elf = Rec<Send<(), Recv<(), Send<(), Recv<(), Var<Z>>>>>>;

The elf function shown in Listing 43 implements an elf that works for a random amount of

5 SESSION TYPES IN RUST 47

 fn server(rx: Receiver<Chan<(), Server>>) {
 loop {
 match rx.recv() {
 Ok(c) => {
 spawn(move || server_handler(c));
 },
 Err(_) => break,
 }
 }

 }


 let (tx, rx) = channel();
 let n: u8 = random();


 for _ in 0..n {
 let tmp = tx.clone();
 spawn(move || {
 let (c1, c2) = session_channel();
 tmp.send(c1).unwrap();
 client_handler(c2);
 });
 }
 drop(tx);


 server_handler(rx);

Listing 42: Using a Sender to connect an arbitrary number of sessions to a server.

time before being in need of help. At that point, the elf will use his channel to get help from
Santa.

The elf must not communicate directly with Santa until the right time, so we implement
a secretary handling the waiting elves. The secretary, Edna, receives the elves one by one in
the waiting room, and groups them in threes to go wake up Santa. Edna holds the channels
to all elves and receives their requests for help. When three elves have requested help, she
delegates the elf channels to Santa who completes the elves’ requests and returns the channels
to Edna (i.e. shows the elves out the door). See Listing 44.

To select over the list of elf channels, Edna uses a function called hselect. hselect is
short for “homogenenous” select and it receives a list of channels, all of which have the same
protocol Recv<A, P> and picks out from the list the channel that is ready to communicate. It
returns a tuple containing the selected channel and the rest of the list. hselect is included
in the session types library and provides a convenient way to select over a list of channels of
the same type.

The session delegation is transparent for the elves, they do not need to communicate
among each other, because Edna ensures that elves do not progress until enough have re-
quested help. The reindeer are handled in a similar fashion, through another secretary, Robin,
who waits for all reindeer to return before Santa is notified.

The final actor in this system is Santa Claus. Santa has two channels: one on which
he receives elves and another on which he receives reindeer. The implementation is shown
in Listing 45. The communication between Santa Claus and his secretaries is modelled by
the protocol:

Rec<Recv<Vec<SantaElf>, Send<Vec<DoneChan>, Var<Z>>>>

where SantaElf and DoneChan are the following declarations:

5 SESSION TYPES IN RUST 48

 fn elf(id: usize, c: Chan<(), Elf>) {
 let mut c = c.enter();
 let mut g = thread_rng();
 let range = Range::new(0, 1000);
 loop {
 sleep_ms(range.ind_sample(&mut g));
 c = {
 let c = c.send(()); // We want to talk to santa
 let (c, _) = c.recv(); // Santa is ready to talk to us

 println!("Elf {} talking to santa", id);
 let c = c.send(()); // We talk to santa
 let (c, _) = c.recv(); // Santa talks to us
 c.zero()
 }
 }
 }

Listing 43: A working elf.

type SantaElf = Chan<(EdnaElf, ()), Send<(), Recv<(), Send<(), Var<Z>>>>>
type DoneChan = Chan<(EdnaElf, ()), Var<Z>>

i.e. Santa waits to receive a vector of elf channels, and then returns a vector of channels that
are ready to recurse. The SantaElf channel type has exactly the protocol corresponding to
the sequence: Santa acknowledges elf, elf asks a question and finally Santa gives an answer.
The DoneChan type reflects the state of the received channels after these interactions have
been carried out.

The precedence requirement is handled implicitly by chan_select!, because it evaluates
its arguments in order and picks the first that is ready to interact. Putting reindeer first then
ensures that if both reindeer and elves are ready the reindeer will be selected. This could
potentially lead to starvation of the elves, if the reindeer were always ready to deliver gifts,
but the threshold for elves is a third of the threshold for reindeer, so this is unlikely to occur
(preventing starvation of the elves is not a requirement either).

5 SESSION TYPES IN RUST 49

 fn edna(mut elves: Vec<Chan<(EdnaElf, ()), EdnaElf>>,
 santa: Chan<(), Rec<Send<Vec<SantaElf>,
 Recv<Vec<DoneChan>, Var<Z>>>>>) {
 let mut santa = santa.enter();
 loop {
 let mut queue = Vec::new();
 while queue.len() < ELF_THRESHOLD {
 let (elf, tmp) = hselect(elves); // Wait for elves
 let (elf, _) = elf.recv();

 queue.push(elf); // Add to wait queue
 elves = tmp;
 }
 santa = {
 let santa = santa.send(queue); // Send queue to santa


 let (santa, queue) = santa.recv(); // Receive queue from santa


 for elf in queue.into_iter() { // Push queue to elves
 elves.push(elf.zero());
 }
 santa.zero()
 }
 }
 }

Listing 44: Edna handling elves.

 fn santa(elves: Chan<(), Rec<Recv<Vec<SantaElf>, Send<Vec<DoneChan>, Var<Z>>>>>,
 reindeer: Chan<(), Rec<Recv<Vec<SantaElf>, Send<Vec<DoneChan>, Var<Z>>>>>) {
 let mut elves = elves.enter();
 let mut reindeer = reindeer.enter();


 loop {
 chan_select! {
 (c, v) = reindeer.recv() => { // Receive all reindeer
 let v = v.map_in_place(|r| { // Get ready to deliver gifts

 let (r, _) = r.send(()).recv();
 r
 });
 let v = v.map_in_place(|r| r.send(())); // Deliver gifts
 println!("Done delivering gifts.\n");
 reindeer = c.send(v).zero(); // Return to Robin
 },
 (c, v) = elves.recv() => { // Receive elves
 let v = v.map_in_place(|r| { // Receive questions
 let (r, _) = r.send(()).recv();
 r
 });
 let v = v.map_in_place(|r| r.send(())); // Answer them
 println!("Done talking.\n");
 elves = c.send(v).zero(); // Return to Edna
 }
 }
 }
 }

Listing 45: Santa Claus handling elves and reindeer.

5 SESSION TYPES IN RUST 50

5.5 Monadic Session Types

Before we settled on the current implementation of session-types, we considered various
approaches, the most prominent one being an almost literal translation of the Haskell imple-
mentation described in Section 4.3. For the sake of completeness, this section describes the
implementation and why we chose not to keep it. The code in this section does not work with
newer versions of Rust, because it has not been updated since rust-1.0.0-alpha. The code
would need to be rewritten to work with the newest version of Rust, but most of it should
make sense.

 pub struct Session<S, S_, A: marker::Send> (
 Box<for <’a>Invoke<&’a UChan, A>+marker::Send>
);
 pub struct Cap<E,R>;


 pub fn send<A: Send, E, R>(x: A) -> Session<Cap<E,Send<A,R>>, Cap<E,R>, ()> {
 Session(box move |: c: &UChan| unsafe_write_chan(c,x))
 }


 impl<A: Send, S, T> Session<S, T, A> {
 pub fn ret(a: A) -> Session<S, T, A> {
 Session (box move |: _:&UChan| a)
 }


 pub fn bind<B: Send, U>(self, k: Box<Invoke<A,Session<T, U, B>>+Send>)
 -> Session<S, U, B>
 {
 Session (box move |: c: &UChan| {
 let Session(m) = self;
 let a = m.invoke(c);
 let Session(m_) = k.invoke(a);
 m_.invoke(c)
 })
 }


 pub fn then<B: Send, U>(self, next: Session<T, U, B>)
 -> Session<S, U, B>
 {
 // snip, similar to ‘bind‘
 }
 }

Listing 46: Sample functions and declarations (Session, Cap, send, ret, and bind) from the monadic Rust
implementation of session types.

The data types for describing session-typed channels and duality in this implementation
of session types are identical to the the ones in the final implementation. However, instead
of a Chan type for explicit channels, the monadic implementation of session types relies on
a Session monad that carries an implicit channel. The definition of Session and Cap, which
encapsulates the environment and protocol, can be seen in Listing 46. They are direct
translations of the Haskell data types. Now, because channels are implicit, the session type
operations like send (also shown in Listing 46) need to return a closure enclosed in a Session.
Finally, to thread all of the sessions together we use bind, which is a translation of the >>>=

function.
Using all of this, the (non-recursive) arithmetic server might be implemented as shown

in Listing 47. The code is more or less a straightforward adaptation of the Haskell code.

5 SESSION TYPES IN RUST 51

 fn server() -> Session<Cap<(), Offer<Recv<int, Recv<int, Send<int, Eps>>>,
 Recv<int, Send<int, Eps>>>>, (), ()> {
 offer(recv()
 .bind(box move |: a: int| recv().bind(box move |:b: int| send(a + b)))
 .then(close())
 ,
 recv()
 .bind(box move |: a: int| send(-a))
 .then(close()))

 }

Listing 47: An implementation of the arithmetic server using the monadic implementation of session types in
Rust.

However, it is neither idiomatic Rust nor is it ergonomic to work with. When it comes to
working with functional values and monads, Rust’s notation is not as terse as that of Haskell.
On the contrary, wrapping everything in closures feels very forced, and there is nothing like
an ixdo preprocessor to help us with binds.7 Additionally, Rust does not currently optimize
recursive closures well, which means that there is a high risk of running into stack overflows.

All this considered, we decided to explore other ways to implement session-typed channels
in Rust. Rust’s affine types allows us to express the same requirements as the approach using
indexed monads, and the result is the implementation decribed in Section 5.2

This concludes the brief overview of our implementation of monadic session types in Rust.
In the end, we deemed the monadic approach unfriendly to work with, and instead reached
the current implementation. The next section will discuss some alternative implementation
strategies and library designs that we never had time to experiment with.

5.6 Alternative Designs

Aside from the monadic design approach, we considered other ways of designing the session
types implementation that we will briefly outline in this section.

Syntax extensions Through compiler plugins we could potentially embed support for
session types as syntax extensions to Rust. It would offer greater flexibility in the choice
of syntax, but would wrap all session interactions in macro invocations. Leveraging syntax
extensions could possibly be used to implement multi-way branching with labels as well.
Embedding special syntax in Rust is fine for small uses and is a common practice in Rust
projects, but embedding an entire DSL that is supposed to mix with other statements is
neither idiomatic nor ergonomic.

We also experimented with smaller syntax extensions to make protocol declaration as
type aliases more ergonomic. Writing big type expressions is error-prone when trying to keep
track of matching < and >, but we found ourselves getting used to writing these types and
consider a declaration macro a useful feature, but not a necessity.

Labelled, multi-way branching We considered different ways to bring labelled, multi-
way branching into our library, but found no satisfactory way to do it. The only way we
could see to implement labels without turning them into run-time values would be through
syntax extensions, but this approach has already been addressed above.

An alternative approach we considered was to introduce more structs to reflect different
numbers of branches. For example we would have Choose3, Offer3, Choose4, Offer4 and so on,

7Though we could potentially write one ourselves. Rust’s plugin system is quite powerful, as we shall see
in Section 7

5 SESSION TYPES IN RUST 52

but that obviously puts an upper limit on the number of branches we would be able to offer.
In the end we decided to stick to binary branches.

Iteration structs We experimented with and implemented iteration constructs inspired
by the constructs provided in SessionJ [19]. We defined the structs

pub struct IterIn<P, N> (PhantomData<(P, N)>);
pub struct IterOut<P, N> (PhantomData<(P, N)>);

where IterIn is the passive iteration and IterOut the active. The first phantom type parameter
P is the body of the iteration, the N parameter is action to execute once iteration terminates.
Like the offer method, a Chan whose next action is IterIn implements a method in_while that
returns a Result indicating whether to iterate or not. It performs the following transformation:

Chan<E, IterIn<P, N>> −→ Result<Chan<(IterIn<P, N>, E), P>, Chan<E, N>>

Either the IterIn type is pushed on the stack and the body is executed, or the IterIn is
removed from the type and N is executed. Chan types whose next actions are IterOut implement
out_while that iterate and exit_while that ends iteration and continues with the next action.

To mark the end of an iterating construct a special IterEps struct is used, that serves
the same function as Var<Z>. Once IterEps is reached, the user must call an iter method to
replace the IterEps with the protocol on top of the stack. Its transformation is as follows:

Chan<(P, E), IterEps> −→ Chan<E, P>

By construction, the only possibilites for P in a typable program are IterIn and IterOut.
Note that IterEps can only be used with a non-empty protocol stack, so typable programs
can only have IterEps nested in either IterIn or IterOut. It is therefore not possible to express
protocols that do not have the option of terminating.

We debated the inclusion of the iteration constructs in favor of the recursive constructs,
but decided in the end to leave them out. The recursive constructs are more expressive and
also keeps our session types DSL in line with the Haskell version.

5.7 Evaluation

The session-types library provides a pure Rust implementation of session types that relies
on the polymorphic type system and affine types. The implementation is clean and simple and
we have found that once you get accustomed to using affine types, writing correct programs
become a breeze. The affine type system cannot give all the guarantees that we require,
because we cannot prevent channel values from being dropped prematurely. To achieve this
property linear types are required. In the meantime, we can urge users to be diligent in
explicitly calling the close method on all channels, thus making sure that protocols are run
to completion.

6 SESSION TYPES IN SERVO 53

6 Session Types in Servo

This section presents our work in translating Servo’s internal communication patterns from
enum based messaging to session-typed channels. We refer back to Section 3 for an explana-
tion of roles of the different processes in Servo.

In Section 6.1 we discuss the paint task and its interacting processes in detail and present a
translation of their communication schemes from regular channels to session-typed channels.
The paint task is an interesting case: It is an integral part of the pipeline, but it primarily
handles requests from the compositor. Specifically, we discuss how to handle the non-trivial
case of shutting down a paint task. In Section 6.2 we discuss some of the challenges we
encountered in Servo, and in Section 6.3, we move on to another example that demonstrates
how a classic client-server setup can be re-interpreted in the session types framework. Finally,
we discuss our experience with porting Servo to session-types in Section 6.4.

6.1 The PaintTask

The paint task listens on a port receiving messages of the type shown in Listing 48. For
example, receiving a Paint message, the task performs the following actions:

• If we do not have permission to paint, send a PainterReady message to the constellation
and notify the constellation of discarded paint messages
• Otherwise, signal to the compositor that we are painting and handle all the requests

submitted with the Paint message.
• When finished, signal the compositor that we are idle.

 pub enum Msg {
 PaintInit(Arc<StackingContext>),
 Paint(Vec<PaintRequest>, FrameTreeId),
 UnusedBuffer(Vec<Box<LayerBuffer>>),
 PaintPermissionGranted,
 PaintPermissionRevoked,
 Exit(Option<Sender<()>>, PipelineExitType),
 }

Listing 48: The paint task Msg enum type.

Only three tasks communicate directly with the paint task: The compositor, the constel-
lation and the layout task. To model the communication scheme with the paint task, we
begin by looking at which variants of the enum type are used by which tasks. The result
of this is shown in Figure 5, from which we see that the enum variants can be disjointly
grouped—that is, all except for Exit.

Both the constellation and layout task may send the Exit message to the paint task,
which in itself already suggests inconsistencies. We saw in Section 3.3 that the layout task is
responsible for shutting down the paint task under normal circumstances, but in failure cases
(forced exits) the pipeline handles shutdown. To avoid spreading the responsibility among
tasks, we will have the pipeline always handle shutdown. The paint task is not shared with
other pipelines, so this strategy should not present any problems.

During initialization of a new pipeline, both the pipeline and its layout task receive
copies of the paint task channel. The compositor, however, does not. The compositor re-
ceives a channel to a paint task through a SetFrameTree message. This message contains
references to a new frame tree and for each frame a view of its associated pipeline, called a
CompositionPipeline. A CompositionPipeline contains a clone of the script and paint channels,

6 SESSION TYPES IN SERVO 54

Figure 5: Communication with PaintTask.

allowing the compositor to communicate directly with these tasks. The compositor stores
these CompositionPipelines internally for later use.

The paint channel may be cloned multiple times. Whenever a pipeline in the history is
revisited or an iframe is initialized, its script and paint channels are cloned to be passed to
the compositor. The compositor does not keep track of whether or not it has already received
channels to a given pipeline, but overwrites any previous values. This is not a problem for
regular channels, but it is a problem for us, because it means that a stored channel will not
properly close its connection (it is just dropped). We want to obey the principle that all
protocols are run to completion and connections are closed properly, so we cannot allow the
compositor to just overwrite a stored channel.

We start by translating each of the variants of the Msg to corresponding session type
declarations:

type UnusedBuffer = Recv<Vec<LayerBuffer>, Var<Z>>
type Paint = Recv<(Vec<PaintRequest>, FrameTreeId), Var<Z>>
type PaintPermissionGranted = Var<Z>
type PaintPermissionRevoked = Var<Z>
type PaintInit = Recv<Arc<StackingContext>, Var<Z>>

We will discuss how Exit is handled later. Note how the permission control does not send
or receive any values, rather the selection of a branch in the protocol is enough to encode
the same information. All these protocols end with Var<Z>, because they are expected to be
nested within a Rec construct.

We declare a protocol for each of the tasks communicating with the paint task. They are
shown in Listing 49 from the point of view of the paint task.

 type Compositor = Offer<UnusedBuffer,
 Offer<Paint,
 Eps>>;


 type Pipeline = Offer<PaintPermissionGranted,
 Offer<PaintPermissionRevoked,
 Exit>>; // To be defined later


 type Layout = Offer<PaintInit,
 Eps>;

Listing 49: Three protocols for communicating with the paint task.

To address the issue of channel cloning we could keep track of the open sessions and have
the paint task handle multiple connections to the compositor. Instead of overwriting stored
channels, the compositor would first close any existing connections, and then store the newly

6 SESSION TYPES IN SERVO 55

received channels. This approach requires the paint task to be able to receive new compositor
connections at any point and be able to select over multiple channels. Alternatively, we can
keep track of whether or not a connection between the compositor and a paint task has already
been established. This second approach is desirable, because it simplifies implementation in
the paint task and avoids excessive copying of data.

Recall that pipelines are organized in a frame tree to handle iframes: The compositor
keeps a reference to the root of the pipeline tree in root_pipeline. However, the introduction
of a Chan type in CompositionPipeline prevents cloning, so the root_pipeline cannot be a
direct clone of root. But usage of the CompositionPipeline is internal to the compositor, and
it does not lend out references or make clones to pass to other threads. This means we can
store CompositionPipelines in reference-counted pointers with Rc. The type of root_pipeline
then becomes Rc<CompositionPipeline>. The Rc type is not Sync, so we cannot risk memory
unsafety with this.

We still need to handle the initialization of the session between the compositor and the
paint task. This session is established on demand, so we will change the protocol between
the pipeline and paint task to include the following branch:

type CompositorChan = Recv<Chan<(), Compositor>, Var<Z>>

The Pipeline protocol is then modified to the version shown in Listing 50, where we still need
to define Exit. This allows the pipeline’s to_sendable method to create a new session and
pass one end-point to the paint task. CompositorChan demonstrates how session delegation is
effortlessly supported in our session types system, as channels are first-class values.

 type Pipeline = Offer<PaintPermissionGranted,
 Offer<PaintPermissionRevoked,
 Offer<CompositorChan,
 Exit>>>;

Listing 50: Extending the pipeline protocol.

There is one drawback to the Pipeline protocol: It does not reflect the requirement that
at most one compositor channel should be transmitted. This could be addressed in different
ways. The paint task could be initialized with a compositor session, but this requires the
pipeline to keep track of the other end of the session until it can hand it off to the compositor.
Preferably, it should be possible to execute the CompositorChan at most once. Listing 51 shows
an enhanced version of the Pipeline protocol that only allows the paint task to receive a
compositor channel once. The Rec pushes the PipelineInner on the protocol stack, and the
branches of PipelineInner do not pop any items off this stack, so the outer protocol becomes
inaccessible, because there is no interaction trace that could execute the third branch more
than once. We are explicitly encoding state in the interaction between the pipeline and paint
task.

 type Pipeline = Offer<PaintPermissionGranted,
 Offer<PaintPermissionRevoked,
 Offer<Recv<Chan<(), Compositor>, Rec<PipelineInner>>,
 Exit>>>;


 type PipelineInner = Offer<PaintPermissionGranted,
 Offer<PaintPermissionRevoked,
 Exit>>;

Listing 51: Encoding a restriction on the number of times the CompositorChan branch can be executed.

6 SESSION TYPES IN SERVO 56

 fn run(&mut self,
 pipeline_chan: Chan<(), Rec<Pipeline>>,
 layout_chan: Chan<(), Rec<Layout>>) {


 let mut pipeline_chan = Some(pipeline_chan.enter());
 let mut layout_chan = Some(layout_chan.enter());
 let mut compositor_chan = None;


 enum ChanToRead {
 Pipeline,
 Layout,
 Compositor
 }


 while pipeline_chan.is_some()
 || layout_chan.is_some()
 || compositor_chan.is_some() {
 let chan_to_read = {
 let mut sel = ChanSelect::new();
 if let Some(ref pipeline_chan) = pipeline_chan {
 sel.add_offer_ret(&pipeline_chan, ChanToRead::Pipeline);
 }
 if let Some(ref layout_chan) = layout_chan {
 sel.add_offer_ret(&layout_chan, ChanToRead::Layout);
 }
 if let Some(ref compositor_chan) = compositor_chan {
 sel.add_offer_ret(&compositor_chan, ChanToRead::Compositor);
 }
 sel.wait()
 };
 match chan_to_read {
 ChanToRead::Pipeline => { /* handle message from pipeline */ }
 ChanToRead::Layout => { /* handle message from layout */ }
 ChanToRead::Compositor => { /* handle message from compositor */ }
 }
 }
 }

Listing 52: The paint task’s run method.

Although we can encode this restriction and it leads to a more accurate representation of
the intended interaction patterns, we opted for the first version, because it is simpler. The
enhanced version of the protocol requires a greater book-keeping effort on the part of the
programmer and it may unnecessarily burden the programmer rather than assist her.

A skeleton implementation of the paint task’s run method is shown in Listing 52. The
idea is that all the tasks communicating with the paint task eventually close the connection.
So the paint task stores its connections in Option types and only exits when all of them are
None. Initially the paint task receives a connection to the pipeline and layout task, but not
to the compositor. Handling the reception of a compositor channel and assigning it to the
compositor_chan variable must be dealt with explicitly by the programmer.

We still need to consider the shutdown sequence and fill in the unspecified Exit branch.
As discussed in Section 3.3 the shutdown sequence is complex and depends on whether it
is a single pipeline being shut down or the entire application. In the latter case, we need
to ensure the compositor closes all its connections to different pipelines. We do not need
to assign responsibility for shutting down the paint task to any task in particular, because,

6 SESSION TYPES IN SERVO 57

as Listing 52 demonstrates, the paint task will wait for all its connections to be closed, before
terminating.

A single-pipeline shutdown is more intricate. As the application will continue to run, it
is important that resources used by the pipeline being shut down are properly cleaned up, so
the paint task wants to collect all its buffers from the compositor before exiting. The pipeline
must therefore wait for the paint task to report that it is ready to shut down before exiting
itself. We can define Exit as:

type Exit = Offer<Eps, Send<(), Eps>>

The Offer encodes the difference between complete and pipeline-only shutdown. In the former
case, the connection is merely closed. In the latter however, the paint task must send an
acknowledgment, encoded as (), before closing the channel. This construction allows the
pipeline to wait for the paint task at the correct time and ensures the pipeline does not
attempt to engage any further with the paint task.

When the pipeline requests a pipeline-only exit, the paint task then stores a channel value
with the following type:

Chan<(Pipeline, ()), Send<(), Eps>>

and delays the acknowledgment until it has received all outstanding buffers. This is demon-
strated in Listing 53. The handle_compositor method is called when the run method has
determined the compositor is ready to communicate. Apart from the compositor channel
to interact with, it receives also a pipeline_exit_chan which may be None. Following the
Compositor protocol, three choices are offered, the first being to receive unused buffers. Upon
receiving these unused buffers an internal counter is decremented and if the counter reaches
zero, we send an ack on the pipelin_exit_chan if provided. The connection to compositor
must also be shut down, but this must happen in a separate interaction once the compositor
is notified of the pipeline’s exit.

6.2 Challenges in Servo

To consume a session-typed channel, we must own the channel. It is not enough to hold a
reference like & or &mut. This is exactly the property we want to have, because it directly
(and elegantly) addresses the aliasing problem. But this requirement does present some
challenges. Specifically, storing channels in structs for later consumption is not particularly
straightforward, because the usage locations may only be borrowed, in which case we cannot
consume the channel.

We considered several solutions, but the one we ended up with, as suggested by Lars Bergstrom,
is to wrap the Chan value in an Option type and use its take method. It has the following
declaration:

fn take(&mut self) -> Option<T>

This function returns the contents of the Option, leaving None in its place. From the declaration
we see that this requires a &mut context, so this approach enables us to consume the contained
value in a mutably borrowed context Putting a value back into the Option is just assigning
a value of type Some(T). This method of allowing consumption of mutably borrowed values
using the take function is also colloquially referred to as the “Option dance”.

Next we need to deal with immutable borrows. In Servo, the majority of contexts in which
Senders and Receivers are used, are immutably borrowed contexts, i.e. in methods declared
with &self. To address this issue we need to investigate the structs in which the channels (in
particular Senders) are stored. If the struct is not shared across threads we can wrap it in a
RefCell, which, in an immutable context, will allow us to mutably borrow its content. The
“extended Option dance” then becomes:

6 SESSION TYPES IN SERVO 58

 fn handle_compositor(&mut self,
 compositor_chan: Chan<(Compositor, ()), Compositor>,
 pipeline_exit_chan: Option<Chan<(Pipeline, ()), Send<(), Eps>>>)
 -> (Option<Chan<(Compositor, ()), Compositor>>,
 Option<Chan<(Pipeline, ()), Send<(), Eps>>>) {
 offer! {
 compositor_chan,
 UnusedBuffer => {
 let (c, unused_buffers) = compositor_chan.recv();

 debug!("PaintTask: Received {} unused buffers", unused_buffers.len());
 self.used_buffer_count -= unused_buffers.len();


 for buffer in unused_buffers.into_iter().rev() {
 self.buffer_map.insert(native_graphics_context!(self), buffer);
 }


 if self.used_buffer_count == 0 {
 debug!("PaintTask: Received all loaned buffers.");
 pipeline_exit_chan.map(|c| c.send(()).close());
 (Some(c.zero()), None)
 } else {
 (Some(c.zero()), pipeline_exit_chan)
 }
 },
 Paint => { /* Omitted */ },
 Close => {
 compositor_chan.close();
 (None, None)
 }
 }
 }

Listing 53: Sending ack to the pipeline at the correct time.

fn foo(&self) {
// stored_channel: RefCell<Option<Chan<E, P>>>
let mut chan_ref = self.stored_channel.borrow_mut();
let chan = chan_ref.take().unwrap();

// new_chan is result after interacting with chan

*chan_ref = Some(new_chan);
}

This extended trick to allow consumption of a stored channel makes use of the interior
mutability provided by RefCell and the take method on Option. The underlying assumption
is that these channel cells are not shared across thread boundaries, i.e. these cells should not
be considered Sync. Fortunately, RefCell is not Sync, so we are not introducing any memory
unsafety.

6.3 The StorageTask

We also experimented with replacing the communication of another task, the storage task.
The storage task works as a key-value store, and clients may store and request bits of infor-
mation from the task. In this regard the storage task resembles a typical server, acting in a
request-response pattern.

The communication API of the storage task is shown in Listing 54. The StorageTaskMsg

6 SESSION TYPES IN SERVO 59

 pub enum StorageTaskMsg {
 Length(Sender<u32>, Url),
 Key(Sender<Option<DOMString>>, Url, u32),
 GetItem(Sender<Option<DOMString>>, Url, DOMString),
 SetItem(Sender<bool>, Url, DOMString, DOMString),
 RemoveItem(Sender<bool>, Url, DOMString),
 Clear(Sender<bool>, Url),
 Exit
 }

Listing 54: The storage task protocol.

enum includes variants for getting and setting key-value pairs and querying the size of the
stored data. All the variants, except Exit, include a Sender on which the storage task can
provide a reply. On receiving Exit the storage task acts like the resource manager presented
in Section 3.2 and exits immediately. This strategy is obviously brittle, because client con-
nections may be suddenly cut when the storage task shuts down and clients may crash as a
result.

The translation to session types can be done piece-wise, by first declaring the following
protocols fragments:

type Length = Recv<Url, Send<u32, Var<Z>>>;
type Key = Recv<(Url, u32), Send<Option<String>, Var<Z>>>;
type GetItem = Recv<(Url, String), Send<Option<String>, Var<Z>>>;
type SetItem = Recv<(Url, String, String), Send<bool, Var<Z>>>;
type RemoveItem = Recv<(Url, String), Send<bool, Var<Z>>>;
type Clear = Recv<Url, Send<bool, Var<Z>>>;

These fragments all receive a value, return a response and then recurse. We combine them
in an Offer chain as follows:

type StorageSrv = Offer<Length,
Offer<Key,
Offer<GetItem,
Offer<SetItem,
Offer<RemoveItem,
Offer<Clear

Eps>>>>>>;

The StorageSrv type represents the communication scheme available for clients. A client can
store and retrieve information and close the connection. Therefore, selecting the Eps branch
does not tell the storage task to shut down, it merely closes the connection. To handle
shutdown, the constellation has its own connection to the storage task through which it can
request shutdown. This connection can be described succinctly as the protocol:

type ConstellationToStorage = Send<(), Eps>;

This “one-shot” protocol allows the storage task to select on all its connections and receive
an exit message at any time. By splitting the connections, the storage task can be allowed
to wait for other clients to close their connections before exiting.

We must also handle the addition of new clients. This could be done by adding another
branch to the constellation connection to allow the constellation to send new channel end-
points. We rewrite the ConstellationToStorage protocol as follows:

type ConstellationToStorage = Choose<Send<Chan<(), Rec<StorageSrv>>, Var<Z>>,
Eps>;

6 SESSION TYPES IN SERVO 60

The first branch delegates a new client channel and the second branch is the shutdown signal.
It is thus the responsibility of the constellation to initiate new sessions between the storage
task and its clients.

We implemented an example storage task to experiment with different approaches to
the communication scheme (outside Servo). In this example the storage task spawned a
new thread per incoming client, and the underlying hash map was then wrapped in an
Arc<Mutex<..>> to allow the client-handling threads to share the data. In effect we pushed
the synchronization point from the storage task into a mutex guarding the data structure.
This approach gives rise to even more threads in a system that already spawns many threads,
and may for this reason not be desirable. An alternative strategy would be to have the
storage task select over all its connections using the ChanSelect structure that we introduced
in Section 5.4.1.

6.4 Experience

Our experience with introducing session types in Servo is that restructuring communica-
tion has far-reaching implications and is by no means trivial. Session-typed communication
requires forethought and thorough planning, but once the protocols and channels are estab-
lished, it seems impossible to use a channel incorrectly, because any incorrect use will not
type-check.

In this chapter we have demonstrated that session-typed communication in larger appli-
cations offers fine-grained control and forces the programmer to consider all possible commu-
nication patterns, but the restriction to binary communication with non-shareable end-points
can be unergonomic and requires a greater effort of the programmer to implement. We ex-
perimented with ways to share a Chan type across threads in a safe manner, but never arrived
at a satisfactory solution (like a distributed Option dance). We also felt that this was not the
right approach for session-types.

We have also attempted to enforce the principle that all connections are closed, but in
reality threads crash for various reasons, and our communication schemes do not handle this
issue.

7 LINEAR TYPES IN RUST 61

7 Linear Types in Rust

Using session-typed channels gives the user certain safety guarantees regarding inter-process
communication, but session-types has certain limitations because Rust’s type system is
affine and not linear. As an example, consider the code in Listing 55 that compiles without
warning, but will fail when actually run: the client never sends anything to the server, but
the server (quite reasonably) expects a number and panics when no such number arrives.
Our implementation of recv assumes correct behavior from the other endpoint, but client

never uses its Chan, so the underlying Sender is dropped and recv panics as a result thereof.
Rust allows the user to drop a value at any time, either implicitly by not referring to it any
more (or placing a wild card _ instead of a name in a pattern, as in Listing 55), or explicitly
by using the drop function. This is the reason why session-types can guarantee that if
something is sent, it is correctly interpreted, but cannot guarantee that anything is actually
sent.

 fn server(c: Chan<(), Recv<u8, Eps>>) {
 let (c, _) = c.recv();
 c.close();
 }


 fn client(_: Chan<(), Send<u8, Eps>>) {}


 fn main() {
 let (c1, c2) = session_channel();

 spawn(|| client(c1));
 server(c2);
 }

Listing 55: A program using session-types that compiles, but panics when run.

To alleviate this problem, we would have to enforce that only channels of type Chan<E, Eps>,
for some environment E, were ever dropped, preferably by calling the close method on them.
Ideally, we would like to treat Chan types as linear types. Support for linear types in Rust
has been discussed8 and may appear in the future, but at the time of writing, the proposal
has been postponed.

This problem is not unique to session-types. Indeed, the channels in the Haskell imple-
mentation of session types described in Section 4.3 are not linear—you can always raise an
exception—and neither are the channels in SessionJ.

Although it is usually quite easy to keep track of your channels in smaller applications,
it becomes progressively harder the more complex your application is. For instance, Servo
consists of more than a hundred thousand lines of Rust code split over almost two thousand
files, so it can be hard to make sure that no session channels are ever prematurely dropped.
Of course, the same is true for Rust’s own message passing channels, but they were purposely
designed to be safely drop-able, whereas Chan types are not.

To address this problem, we decided to implement a Rust plugin, humpty_dumpty, to track
linearity of specific types and report linearity errors to the user.

The next section (Section 7.1) will describe the design and implementation of humpty_dumpty.
Section 7.2 will discuss the limitations present in the current implementation of humpty_dumpty.
Some can be fixed, but it is unlikely that we will be able to solve the linearity issue in the
general case. Lastly, Section 7.3 briefly evaluates humpty_dumpty and our experience writing
it.

8Most recently in https://github.com/rust-lang/rfcs/issues/814

7 LINEAR TYPES IN RUST 62

7.1 Design and Implementation of humpty_dumpty

This section describes the design and implementation of a compiler plugin that tracks linear
usage of annotated types. The Rust compiler exposes an advanced plugin infrastructure, that
allows user-provided libraries to provide syntax extension and lint checks. Syntax extensions
allow the programmer to extend the abstract syntax tree (AST), and lint checks allow custom
project-specific checks to be implemented by traversing the fully typed AST. Servo showcases
advanced uses of both these methods, for example building perfect hash maps at compile-
time, auto-generating GC trace hooks and implementing safety checks for the interface with
the SpiderMonkey garbage collector [30].

The goal with humpty_dumpty is to provide a lint that tracks usage of specially annotated
types throughout the user’s programs and warns the user on incorrect usage. For instance, in
Listing 55, we would like humpty_dumpty to return an error stating that the client function
does not correctly handle the Chan type linearly.

For the remainder of this chapter we will consider a type Foo that we wish to protect
against being incorrectly dropped. The only way the user is allowed to get rid of a Foo value,
is through the close function. We assume that there are no references to, or compound
data structures containing, values of type Foo. We also assume that all called functions and
methods are local to the current crate and that there are no generic functions, closures, or
labelled loops.

For humpty_dumpty to correctly assert that no violations of linearity take place, the plugin
should check all function definitions in the user’s program to verify that all Foo values are
correctly handled. For instance, if a let declaration introduces a new variable binding of the
type Foo that variable should be tracked through the remainder of the program. To keep
track of variables of interest, we use a hash map containing a reference to the original place
of declaration for each value.

When checking a function, we first figure out which, if any, of the function arguments have
type Foo and add those to the hash map. We then walk the body of the function, removing
and adding variables to the hash map as necessary. Specifically, every time a protected value
is consumed—by passing it to a function for instance—we remove it from the hash map, and
every time a protected value is returned from a function, or otherwise brought into existence,
we add it to the hash map. If any protected values are returned at the end of the function,
we also remove those from the hash map. If the hash map is empty once we have traversed
the entire function, we declare that this function upholds linearity for the protected type Foo.
Specifically, if the hash map is empty when the entire function has been traversed, then all
protected values have either been consumed by passing them on to other (supposedly correct)
functions or returned. We also have to take into account Rust’s control flow operations. Here,
we will focus on match and loop statements, because we can regard these as generalizations
of the remaining control flow structures (for, if, and while) in Rust.

First, we will show how we handle match statements. Consider the code in Listing 56.
The two branch arms of the match statement are not equivalent in terms of linearity in the

 let x = Foo;


 match some_predicate {
 true => { close(x); }
 false => { }
 }

Listing 56: A non-linear usage of the match statement.

x variable: The true branch consumes x, the false branch does not. Therefore, the match
statement is not linear, and we want to catch cases like this.

7 LINEAR TYPES IN RUST 63

The arms of the match statement are individual blocks and they can therefore not intro-
duce new bindings that leave their block. They can mutate and consume values from, and
return values to, the outside scope, but otherwise a match block cannot modify the enclosing
scope. New linear values can be created, but they must be correctly consumed before the end
of the block, otherwise they will be implicitly dropped. Finally, if one branch of a match state-
ment consumes a protected value from the enclosing scope, all other branches must consume
the protected value as well, otherwise the linearity state at the end of the match statement
would be inconsistent. Therefore, whenever we reach a match statement, we make separate
traversals of each branch. If, at the end, the hash maps for the branches are identical, they
are linearly equivalent with respect to Foo, and if not, we can notify the user that the match
arms are not linear. Checking that match arms are mutually equivalent with respect to linear
variables is not sufficient though. We must also ensure that the hash map produced by each
arm is a subset of the initial hash maps at the beginning of the match statement.

Our code also has to take into account the argument that is being matched, as well as
the patterns in the different arms of the match statement. The argument is consumed like
the arguments to a function and any protected values in the patterns are added to the hash
map.

We must also consider how the return statement influences our analysis. With no enclosing
control structures, return marks the end of a function, and we check that the hash map is
empty and do not process any following statements. However, inside a match statement,
some or all of the arms may call return, which complicates our analysis. Consider Listing 57

 let x = Foo;


 match some_predicate {
 true => { some_fn(x); return; }
 false => { }
 }

Listing 57: An example showing usage of return in a match statement.

in which the true branch contains a return statement. Clearly, it is okay to return here
(assuming x is the only protected value), but it does not make sense to compare the hash
map of true branch to the hash map of the false branch, so we cannot tell if the entire match
expression is valid or not. Instead, we keep track of an additional boolean entry to indicate
whether we have encountered a return statement or not. Whenever we encounter a return

statement, we set that boolean to true, and treat the expression just like the end of a function
by asserting that the hash map is empty. Now, whenever we have traversed the branches of
a match statement, we check for returning branches. If all branches are returning, then the
whole match statement is returning and we do not have to worry about linearity, because the
individual branches have already been checked. Otherwise we simply ignore the returning
branches and proceed as described previously with the remaining non-returning branches.

We also have to handle loop statements. For simplicity, we will disregard labelled loops
and labelled breaks. As an example, we will consider the code in Listing 58. and Listing 59.
Clearly, Listing 58 is an example of correct linear usage in a loop: if some_predicate() is
true, we consume x and break the loop, and otherwise x is not touched. However, although
Listing 59 is similar, it is not correct: both branches of the if statement break the loop, but
only one consumes x. For humpty_dumpty to correctly check loops, there are two primary
areas of concern.

First of all, if we reach the end of the loop, the hash map should be identical to the
hash map at the beginning of the loop. Like in the match statement we can mutate external
protected values and create new local ones, but the local protected values have to be consumed
before the end of the scope. Secondly, any time we encounter a break statement, we have

7 LINEAR TYPES IN RUST 64

 let x = Foo;
 loop {
 if some_predicate() {
 close(x);
 break;
 } else {
 do_work();
 }
 }

Listing 58: An example of a loop statement with
protected values.

 let x = Foo;
 loop {
 if some_predicate() {
 close(x);
 break;
 } else {
 break;
 }
 }

Listing 59: A non-linear loop.

to make sure that the current hash map contains a subset of the entries of the hash map
at the beginning of the loop, otherwise there would be unconsumed protected values when
exiting the loop. We also have to make sure that all break statements result in the exact
same output hash map, otherwise there will be inconsistencies in the linearity of the loop. In
essence, break statements in loops are analogous to the end of a match block with regards to
linearity.

Furthermore, we need to consider the continue statement. However, it is similar to han-
dling the end of a loop block: we must ensure that the current hash map is the same as the
hash map at the beginning of the block.

Now that we have given a rough description of how humpty_dumpty works, we will discuss
some of the assumptions we made at the beginning of this chapter: we assumed that there
were no references (borrows) to protected values and that protected values did not appear in
any structs or other data types (we had other assumptions, but those will be dealt with in
Section 7.2).

First, we cannot completely ignore references: they are essential to many Rust pro-
grams and many programs would be impossible or very hard to express without them.
Luckily, a simple reference like &x, where x is a Foo, is easily allowed: we simply ignore
it and let the borrow checker do its job. However, it is also possible to write something like
let y = &SomeStruct { val: x }, which actually consumes x but only returns a reference to
a SomeStruct. When encountering anything that is being borrowed, we can only ignore it, if
it is of the simple form described above. Otherwise, we have to traverse the whole type and
figure out if it contains any protected values.

Similarly, we have to take data structures containing Foos into account. For example, one
can imagine the usefulness of a Vec<Foo> or an Option<Foo>. The way we handle these, is to
track them as if they were regular Foo types. That is, any time we come upon a variable of
some type T, we traverse that type to determine if it contains any occurrences of Foo. If that
is the case, we track it through the remainder of the program. This approach covers simple
cases, but not all of them. We discuss the limitations of humpty_dumpty in the next section.

This concludes the description of the design and implementation of humpty_dumpty. The
code has been developed in collaboration with Manish Goregaokar, is available on GitHub,9

and is published on crates.io.10

7.2 Limitations in humpty_dumpty

Although humpty_dumpty is able to detect a wide variety of linearity errors in a given program,
as showcased by the many tests and examples also included with the code, it is by no means
perfect. Rust is a complex language and there are limitations to what humpty_dumpty can do.

9https://github.com/Manishearth/humpty_dumpty
10https://crates.io/crates/humpty_dumpty

7 LINEAR TYPES IN RUST 65

Some are inherent to Rust, and are not likely to be alleviated, while others are shortcomings
in humpty_dumpty, which can and should be fixed. The biggest problems are closures, generic
functions and external crates.

 let x = Foo;
 let cl = || { close(x); };

Listing 60: A closure that captures and correctly
closes a protected value.

 fn dropper<T>(_: T) {}


 let x = Foo;
 foo(x);

Listing 61: A generic function, dropper, which can
currently be used to drop protected values without
complaints from humpty_dumpty.

First of all, closures pose an interesting problem. Listing 60 shows a closure, cl, that
captures a protected value, x, and correctly closes it using close. However, the code is only
correct if cl is actually run, otherwise x is implicitly dropped when the closure runs out of
scope. To address this, we need to make sure that cl is eventually invoked, which requires that
cl is treated as a linear type. But cl is of type FnOnce<()> which does not tell humpty_dumpty
that the value should be tracked. Therefore, tracking cl is not straightforward, and would
require rewriting much of humpty_dumpty’s code.

Secondly, generic functions allow users to fool humpty_dumpty and unsafely drop protected
values. The function dropper in Listing 61 is an example of such a function. It takes a value of
generic type as an argument and promptly drops it. Because humpty_dumpty checks functions
independently of each other, it does not know that T is actually instantiated to Foo, and it
therefore happily—but wrongly—allows its argument to be dropped. We could identify at
the call site of a generic function the types of its arguments, but the provided AST only has
the generic version available (i.e. before monomorphization), so checking these require special
treatment.

Finally, humpty_dumpty cannot traverse functions defined in external crates. The only
information we have regarding functions from external crates is their signature and any
attributes that they might have. Whenever we pass a protected value to an external function,
we therefore have no way of knowing whether or not it will be correctly handled. Even though
some external function has the signature ext(Foo) -> Foo, there is no way to guarantee that
the Foo we get back is the same Foo we had to begin with. The first Foo might have been
incorrectly dropped and a new one returned, or perhaps the external function does not even
return a value of the same type, and we cannot tell if it correctly closes the Foo we passed. We
can hope that the creator of the external library also uses humpty_dumpty to make sure that
protected values are treated correctly, but even then, many functions from external crates
that we would use are probably generic functions.

Lastly, we have ignored the issue of labelled loops: loops can be labelled, and both break

and continue can specify a label, indicating which of the enclosing loops to break or continue
from. Handling labelled loops would require keeping track of all enclosed loops instead of
just the closest one. Doing so would require reworking the existing code, but it appears to
be much more manageable to fix than either closures and generic functions. Unfortunately,
we have not had the time to do so, so it will have to remain as future work.

7.3 Evaluating humpty_dumpty

The fundamental problem we wanted to address with humpty_dumpty is the following: For
an annotated type T, ensure that no values of type T are ever implicitly dropped. It is of
relevance to our session types implementation, because our Chan types are explicit values and
can be unintentionally dropped. This contrasts with the implicit channels in [18] that cannot
be unintentionally dropped, because they are enclosed in a monad.

7 LINEAR TYPES IN RUST 66

The standard approach in Rust is to use the #[must_use] attribute, but it does not guar-
antee that certain types and return values are indeed used. For example, a common idiom
when using the Result type (which is marked as #[must_use]) is to silence the warnings by a
binding to the wildcard identifier. A statement like:

Ok::<u8, bool>(42);

will elicit a warning, because Ok is #[must_use], but it can be silenced by the following binding:

let _ = Ok::<u8, bool>(42);

We concluded #[must_use] was not satisfactory for our purposes, as there were too many
error cases that it would not catch, and set out to create a compiler plugin that traces linear
usage of specifically annotated types. Although humpty_dumpty handles a collection of non-
trivial cases, it does not handle them all, and it has shown that compiler plugins for Rust
have limitations that put restrictions on what we can achieve.

We conclude that humpty_dumpty does not fully satisfy the goals we started out with.
We have explored how to transform a programming language with affine types into one with
linear type capabilities and found that true linear types require fundamental changes to the
language. We expect that many of the shortcomings of humpty_dumpty can be addressed, but
it will never be a true substitute for linear types in Rust.

8 EVALUATION 67

8 Evaluation

This section summarizes the results of our work, compares it with other works in similar areas,
and gives suggestions for future work that might be interesting. Section 8.2 discusses some
related work, most notably OTP supervisors (of Erlang fame), which offer an alternative way
of handling communication and communication failues. Section 8.3 lays out our thoughts
and ideas for relevant and interesting improvements and extensions to our work. Section 8.4
summarizes our work and presents our conclusion.

8.1 Performance

One of the success criterias for Servo is performance. It has to be as least as fast as other
browsers. Consequently, we cannot allow our internal communication to take up too much
time.

Internally, the Chan types use the channel abstraction provided in Rust’s standard li-
brary, so the performance of the internal send and receive operations should match their
performance.

We have identified three potential causes for overhead in our implementation. First of
all, we have to consider boxing and unboxing values when they are transmitted. Because
our implementation of untyped channels currently relies on boxing the values and sending
a transmuted reference to that boxed value over a Sender and Receiver, there is a direct
overhead here. Secondly, branch selection incurs a direct overhead: each branch requires a
boolean to be sent. Finally, the wrapper functions unsafe_write_chan and unsafe_read_chan

can incur additional function call overhead.
The wrapper functions are in all likelihood not a problem, because the Rust compiler uses

the LLVM compiler infrastructure, which is sophisticated enough to identify thin wrappers
with the potential for inlining. Furthermore, we can annotate these functions with #[inline],
which hints to the compiler that these functions should be inlined. The unsafe_write_chan

and unsafe_read_chan are both two-line functions (where one line effectively is a no-op) and
are used in just two places each, so the overhead from inlining should be small.

Branch selection is an overhead inherent in the design of the library. In general, to select
among n branches, we are must transmit at least log n booleans. Additionally, if the user
chooses to use our offer! macro to ease legibility, the number of transmissions becomes linear.
This overhead can only be addressed by redesigning the branching constructs, for example
by implementing k-ary branching.

Boxing and unboxing of values is interesting, because boxing a value before we send it is
not inherently slower than not boxing it. Indeed, for large data structures boxing is typically
desired, because it avoids copying large chunks of memory. For small values, however, boxing
will typically be inefficient. We decided to investigate the overhead of boxing for differently
sized data types to get an insight into the trade-off. This is discussed in Section 8.1.1

We box values, because the standard Rust channels do not allow transmitting differently
sized values over the same channel. But if we were to implement our own transmission
mechanism that could handle values of different sizes, we would likely be able to get rid of
the requirement for boxing.

The benefits of addressing the boxing overhead are multiple: Changing the underlying
transmission mechanism does not imply a change in the library API, so addressing this issue
would be transparent to the user. It also affects the cost of branching by lowering the cost
of each transmission.

Section 8.1.1 investigates the cost of boxing values before they are sent over a channel,
while Section 8.1.2 examines introducing session-typed channels in Servo’s internal commu-
nication affects its performance. In both cases, we perform a variety of benchmarks, all of

8 EVALUATION 68

Unboxed Boxed

Bytes µ σ µ σ

8 28.218 1.8057 35.769 2.1372
64 34.264 1.7006 35.141 2.1226

512 56.809 2.5561 47.398 1.6484

Table 1: Numbers obtained from microbenchmark. All numbers are in microseconds (µs).

which were carried out on an Intel Core i7-4900MQ with eight cores each at 2.8GHz, and
16GB of RAM.

8.1.1 The Cost of Boxing

We decided to investigate the cost of boxing. To do this, we considered using Rust’s built-in
mechanisms for benchmarking, but by default only the median and the range are reported
and we found that outliers were not dealt with. Instead we opted to use an implementation
of the criterion benchmarking tool for Rust, criterion.rs.11 The benchmarks were run using
values of sizes 8 bytes (the size of an f64), 64 bytes and 512 bytes. For each of the sizes, 100
tests with transmitting boxed and unboxed values were run and in each test the value was
transmitted 100 times. The results are reported in Table 1.

With a difference of 23.6%, we see that the overhead from boxing is large for 8-byte
values. For 64-byte values, the time for unboxed values increase to roughly same time as
for the boxed values (2.53% difference), and the time for transmitting boxed values does not
change significantly with the size of the data. Jumping to 512 byte values, we see an increase
in times for both boxed and unboxed values, but transmitting boxed values is now 18.06%
faster than unboxed values.

This analysis suggests there is a potential performance gain to be had by specialising code
to not box small values, while keeping large values boxed.

8.1.2 Performance in Servo

We also wanted to get an insight into how the changes introduced in Servo affected its
overall performance. Internally the Servo team has a collection of static sites used for small
benchmarks, and we were granted access to this repository.

Servo has built-in time and memory profilers that the user can hook into and request
profiling output. But the output is specifically focused on certain computation-intensive
tasks that do not necessarily involve communication, and we are interested in seeing how the
system performs as a whole, i.e. we wish to measure the time taken from initial page load
until the compositor sits idle.

Our strategy is simple: We instrumented Servo to initiate a shutdown if the script task
sat idle for a long enough time. By trial and error we estimated the average page load to be
under three seconds, so this is the cap we chose. At start-up the current time is stored and
on shutdown, the time taken from start-up until shutdown is reported. For each site selected
from the collection of static sites, we ran Servo with the given site 100 times and collected
the output duration. The results are displayed in Table 2.

First, we should note that the times reported measures how long it took before the script
task had been sitting idle for three seconds. The measurements also include the overhead
of actually starting and stopping the Servo process. Therefore, the times reported are not
indicative of how long the user will actually perceive that the load took. For example, the

11https://github.com/japaric/criterion.rs

8 EVALUATION 69

master session-types

Website µ σ µ σ Diff.

Reddit 4492.27 96.93 4482.11 48.54 −10.16
Reddit (no JS) 4208.98 11.86 4209.51 11.60 0.53
Ars Technica 3080.41 11.48 3077.09 9.95 −3.32
Wikipedia 5127.47 10.55 5117.18 7.03 −10.29
YouTube 3154.75 14.19 3150.66 12.55 −4.09

Table 2: Duration of time from start-up until shutdown (including idle time) with standard deviation
and difference of mean values. The difference is given as µsession-types − µmaster. All numbers
are in milliseconds (ms).

Wikipedia page took over five seconds to load, on average, which, even after subtracting
the three second timeout is not indicative of the general user experience, but must instead
be a result of a background script firing events after rendering is complete. Indeed, anyone
opening a locally stored Wikipedia homepage in Servo, with the original version or ours, will
see that it loads almost instantly. However, we are comparing two branches of Servo where
the only difference is whether or not session-typed channels are used, so we can still draw
some useful observations from the test.

Overall we do not see big differences in the reported mean values—less than 1% in all
cases. We note that except for the Reddit (no JS) site, our version with session types is a
little faster, but it is all within the standard deviation and there too many potential sources
for noise in these measurements to attribute this to our changes. This data indicates that
session-typed communication does not impose much, if any, performance overhead in a large
application such as Servo.

8.2 Related Work

OTP Supervisors The open telecom platform (OTP) is a framework for building mas-
sively scalable soft real-time systems. It comprises the Erlang programming language, an
application server, a number of auxiliary tools and several libraries [31].

One of the design principles in OTP, is the supervisor behaviour in which there are
worker processes and supervisor processes. In case of a worker crash, its supervisor can try
to restart it according to a prespecified strategy. Supervisors are organised in a tree structure
to establish a hierarchy [32].

We considered implementing supervisor trees in Rust and using them in Servo, but decided
against it for a number of reasons. Supervisor trees in Servo would be small, because Servo
consists of an array of independent processes that all intercommunicate. To handle these
processes, one supervisor could be implemented to monitor all of these processes, but this
still does not prevent one process from crashing because of miscommunication from another
process.

Supervisors are aimed at handling the events where processes fail, but we are interested
in preventing these failures. Ensuring communication consistency is not the domain of su-
pervisor trees.

The Join Calculus The join calculus is a process calculus developed for distributed pro-
gramming, and for this reason the core calculus only provides asynchronous communication
mechanisms. The core idea is to decouple transmission from synchronization to allow syn-
chronization issues to be resolved locally [33]. Synchronous communication mechanisms, such
as rendez-vous points, can be implemented via the asynchronous mechanisms.

8 EVALUATION 70

The join calculus introduces join patterns that facilites matching against messages on
multiple channels simultaneously (in effect using pattern matching as a synchronization mech-
anism), and the construct is powerful enough to encode standard concurrency primitives such
as the actor model, synchronous message passing and rendez-vous. A common idiom in using
join patterns is to encode state of a concurrent object in private messages, and join patterns
can be used to implement data structures such as shared variables and bounded buffers.

Encoding the state of an object or process in message passing has a certain appeal (we
have mentioned how session types can be thought of as encoding the state of a process).
This approach greatly simplifies the implementation of common concurrency communication
mechanisms. The following example code implements a read-write lock:

let rwlock () =
def shared() & idle() = reply to shared & s(1)
or shared() & s(n) = reply to shared & s(n+1)
or release_shared() & s(n) = if n = 1 then idle() else s(n-1)
or exclusive() & idle() = reply to exclusive
or release_exclusive() = idle()
in spawn idle();
shared, release_shared, exclusive, release_exclusive

;;

The def-or is a join-definition, and each line is a reaction rule that comprises a join pattern
and a process body. A join pattern is a list of channel names with formal arguments (for
example “shared() & idle()” above). The process body of a reaction rule is executed only
when there are messages present on all channels in the join pattern. For example, sending
a message on shared can match either the first or second reaction rule of rwlock. If there is
a message on idle, the process body of shared() & idle() is executed. The reply to shared

makes calls to shared synchronous, i.e. a call to shared blocks the process until one of the two
join patterns are matched. The channel names idle and s encode the internal state (they
are not made available to the user). On initialization a message is ready on idle, and this
enables either the rule shared() & idle() or exclusive() & idle(). The s channel carries as
a message the number of readers currently holding a shared lock, and calls to release_shared

match with s(n) and either decrements the number of holders or calls idle.
A number of implementations of the join calculus have been made, primarily as extensions

to existing programming languages, notably JoCaml and Polyphonic C] [34, 35], and an
elegant solution to the Santa Claus problem discussed in Section 5.4.4 has been implemented
in Polyphonic C] [36].

The Rust approach to concurrency is to specify the requirements for data to be sent
and shared (through the Send and Sync traits), and let the user pick his or her concurrency
model. For this reason, it would be an interesting project to see if the join calculus could
be embedded in Rust, and furthermore see how its declarative approach to synchronization
could improve the communication schemes in Servo.

8.3 Future Work

8.3.1 Improving the Type System

The type system of session-types is not complete in the sense that two programs that
express the same patterns of interactions (i.e. their interaction traces are equal) do not nec-
essarily have the same type. In this respect we diverge from the session types theory that
defines an equivalence relation on types, but we do not support this notion of equivalence.
This can be observed in the cases of branching and recursion.

We have discussed these limitations in Section 5.2, but have not attempted to provide a
solution here, because we did not feel it was within the scope of this dissertation.

8 EVALUATION 71

8.3.2 Improvements in session-types

Based on our discussion in Section 8.1.1 we are confident that we can improve the performance
of session-types by creating our own message passing mechanism instead of boxing and
unboxing values. Ideally, we could switch on the size of a value to decide whether or not to
box it. From our experience with Servo it does not appear common to transmit large values,
so removing boxing for small values would quite likely be an improvement.

Furthermore, we could probably improve the memory allocation strategy by inferring the
size of the largest value that can be transmitted in a given protocol. The Rust standard
library provides a size_of function that at compile-time determines the size of an indicated
type. We could then exploit the tree-like structure of the session types DSL to infer the size
of the biggest type in the protocol (this obviously does not promise that a value of this type
will be transmitted, only that it could be). It would then suffice to allocate memory slots of
that size for any channel with that protocol.

8.3.3 Rewriting Servo

We have only rewritten a fraction of Servo and we need to carry on the work of porting the
process communication to session-typed channels. We are collaborating with Lars Bergstrom
of Mozilla Research to land our changes in the Servo mainline.

As we have demonstrated in this dissertation, replacing the communication schemes re-
quires manual work, and it requires a substantial amount of research to understand and
translate the implicit protocols already present. In many cases, no direct translation is possi-
ble, simply because a certain communication scheme may not be feasible using session types
(like repeatedly cloning Sender values), and the developer will have to come up with alter-
native schemes. Other cases may have several reasonable translations depending on how the
original is expected to work, and the developer will have to decide which one is correct.

8.3.4 Improving humpty_dumpty

Of the three issues described in Section 7.2: closures, generic functions, and external crates,
the latter is probably the hardest to fix. Essentially, humpty_dumpty is limited by what a
plugin can do: it cannot access function definitions in external crates. Possible solutions
include banning (or at least warning on) all calls to functions in external crates that moves
protected values, except, perhaps, for a list of manually verified functions. For instance, it
might be useful to be able to put Foos in a vector (Vec, defined in std::vec) with push, and
take them out again using pull. Another solution is to allow calls to external functions, but
track all values returned from them, regardless of their types, and make sure that they are
dropped in some specific manner. Neither solves the problem in general, but it might be
worth experimenting with both solutions to see which one works best for our purposes.

In contrast, handling closures and generic functions is not a insurmountable problem,
but it will still require substantial effort to do right. We need to do additional tracking of
functional values as well as custom traversals of function definitions with type parameters
substituted.

8.4 Conclusion

We have demonstrated that session types can be implemented directly in a programming lan-
guage with affine types, and we provide an implementation of session types as a Rust library,
session-types, along with an informal argument for type safety. Emphasizing usability in
real-world applications has led us to expand the core session types primitives with the macros
chan_select! and offer!.

8 EVALUATION 72

We have ported parts of Servo’s internal communication patterns from simple message-
passing channels to session-typed channels, and demonstrated that it is feasible to introduce
session types in a concurrent, real-world application to prevent errors arising from miscommu-
nication. Through benchmarks we have shown that the use of session types in Servo carries
negligible performance overhead.

We have explored the possibility of enforcing linearity of types in Rust, and developed
the humpty_dumpty compiler plugin as a result. Although we can solve a host of cases, the
limitations of the Rust compiler’s plugin infrastructure do not allow us to solve the general
case.

Finally, we have submitted a paper about our work to the 11th ACM SIGPLANWorkshop
on Generic Programming (WGP 2015) that is currently in review.

While working on this project, we have actively participated in both the Rust and Servo
developer communities by submitting bug reports, feature requests and minor fixes. To test
humpty_dumpty, we extracted a tool from the Rust compiler, compiletest, into a stand-alone
crate that we published on crates.io. To our surprise, the compiletest utility has turned out
be a popular tool among other developers, with over 400 downloads at the time of writing.

We hope to be able to continue to develop our session-types library, because there are
still many interesting venues for improvement. For example, we would like to formalize and
prove additional properties about our session type system. Other areas include performance
improvements and extending the capabilities of humpty_dumpty.

With our work, we believe to have shown that session types can be used to specify and
verify the communication patterns of concurrent processes, without sacrificing too much
expressiveness or performance. We hope that our work will help pave the way for a wider
adoption of session types in production-level software.

8 EVALUATION 73

Acknowledgments

We would like to thank Lars Bergstrom of Mozilla and Manish Goregaokar of IIT Bombay
for their help and support. Lars has been enormously helpful in understanding the communi-
cation patterns in Servo and the problems that Servo had. He has been very supportive from
the beginnning of this project, and there would probably not have been a project without
him. Manish has been immensely helpful in understanding many of the inner workings of
the Rust compiler, and has contributed with many suggestions for improving our work on
session-types. Additionally, his help has been crucial for our work with Rust’s compiler
plugins: humpty_dumpty would not be anywhere near where it is now, if not for him. Their
support has been greatly appreciated.

We would also like to thank our supervisor, Ken Friis Larsen, who has been very encour-
aging through the whole process, and we are grateful for having the opportunity to submit a
joint paper about our work to the WGP 2015 with him.

Finally, we would like to extend our thanks to the people of the #rust-internals and #servo

channels on irc.mozilla.org, who have always been helpful in answering our questions, the
great community surrounding Rust and Servo for supporting this language and the browser
engine of tomorrow, as well as everyone else who have, directly or indirectly, helped us.

REFERENCES 74

References

[1] John A. Trono. A new exercise in concurrency. SIGCSE Bulletin, 1994.

[2] Simon Gay and Malcolm Hole. Types and subtypes for client-server interactions. In
S.Doaitse Swierstra, editor, Programming Languages and Systems, volume 1576 of Lec-
ture Notes in Computer Science, pages 74–90. Springer Berlin Heidelberg, 1999.

[3] The Microsoft Internet Explorer web browser.
https://en.wikipedia.org/w/index.php?title=Internet_Explorer&oldid=

651130028.

[4] Mozilla Firefox.
https://en.wikipedia.org/w/index.php?title=Firefox&oldid=651485968.

[5] Safari (web browser).
https://en.wikipedia.org/w/index.php?title=Safari_%28web_browser%29&oldid=

651567276.

[6] Opera (web browser).
https://en.wikipedia.org/w/index.php?title=Opera_%28web_browser%29&oldid=

651331466.

[7] Google Chrome.
https://en.wikipedia.org/w/index.php?title=Google_Chrome&oldid=651567171.

[8] Timeline of web browsers.
https://en.wikipedia.org/w/index.php?title=Timeline_of_web_browsers&oldid=

650932481.

[9] Browser History Timeline.
http://meyerweb.com/eric/browsers/timeline-structured.html.

[10] The Rust Reference. http://doc.rust-lang.org/reference.html.

[11] Eric Reed. Patina: A formalization of the rust programming language. ftp://ftp.cs.

washington.edu/tr/2015/03/UW-CSE-15-03-02.pdf, February 2015.

[12] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-
calculus using a stack of regions. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, pages 188–201, New
York, NY, USA, 1994. ACM.

[13] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen,
and Peter Sestoft. Programming with regions in the MLKit (revised for version 4.3.0).
Technical report, IT University of Copenhagen, Denmark, January 2006.

[14] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In Proceedings of the ACM SIG-
PLAN 2002 Conference on Programming Language Design and Implementation, PLDI
’02, pages 282–293, New York, NY, USA, 2002. ACM.

[15] The Rust programming language. http://doc.rust-lang.org/book/.

[16] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language and its
Typing System. In PARLE ’94: Proceedings of the 6th International PARLE Conference
on Parallel Architectures and Languages Europe, pages 398–413, London, UK, 1994.
Springer-Verlag.

REFERENCES 75

[17] Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005.

[18] Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. SIG-
PLAN Not., 44(2):25–36, September 2008.

[19] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed program-
ming in java. In Jan Vitek, editor, ECOOP 2008 – Object-Oriented Programming, volume
5142 of Lecture Notes in Computer Science, pages 516–541. Springer Berlin Heidelberg,
2008.

[20] Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order
session communication. Electronic Notes in Theoretical Computer Science, 171(4):73 –
93, 2007. Proceedings of the First International Workshop on Security and Rewriting
Techniques (SecReT 2006).

[21] Matthias Neubauer and Peter Thiemann. An implementation of session types. In Prac-
tical Aspects of Declarative Languages, pages 56–70. Springer, 2004.

[22] Matthew Sackman and Susan Eisenbach. Session types in haskell. 2008.

[23] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In Proceedings of
the 7th European Symposium on Programming: Programming Languages and Systems,
ESOP ’98, pages 122–138, London, UK, UK, 1998. Springer-Verlag.

[24] Simon J Gay and Vasco T Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(01):19–50, 2010.

[25] Ivan E Sutherland and Gary W Hodgman. Reentrant polygon clipping. Communications
of the ACM, 17(1):32–42, 1974.

[26] C. A. R. Hoare. Communicating sequential processes, 1985.

[27] Occam manual. http://www.eg.bucknell.edu/~cs366/occam.pdf.

[28] Alef language reference manual. https://swtch.com/~rsc/thread/alef.pdf.

[29] The Go programming language language specification. http://golang.org/ref/spec.

[30] B. Anderson, L. Bergstrom, D. Herman, J. Matthews, K. McAllister, M. Goregaokar,
J. Moffitt, and S. Sapin. Experience Report: Developing the Servo Web Browser Engine
using Rust. ArXiv e-prints, May 2015.

[31] Seved Torstendahl. Open telecom platform.

[32] Who supervises the supervisors? learn you some erlang for great good! http:

//learnyousomeerlang.com/supervisors#from-bad-to-good.

[33] Cédric Fournet and Georges Gonthier. The join calculus: a language for distributed
mobile programming. In Applied Semantics, pages 268–332. Springer, 2002.

[34] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for objective-caml.
In Agent systems and applications, 1999 and third international symposium on mobile
agents. Proceedings. First international symposium on, pages 22–29. IEEE, 1999.

REFERENCES 76

[35] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern Concurrency Abstractions for
C], 2002.

[36] Nick Benton. Jingle bells: Solving the Santa Claus Problem in Polyphonic C]. Unpub-
lished manuscript, Mar, 2003.

A THE SESSION-TYPES LIBRARY 77

A The session-types Library

 //! session_types
 //!
 //! This is an implementation of *session types* in Rust.
 //!
 //! The channels in Rusts standard library are useful for a great many things,
 //! but they’re restricted to a single type. Session types allows one to use a
 //! single channel for transferring values of different types, depending on the
 //! context in which it is used. Specifically, a session typed channel always
 //! carry a *protocol*, which dictates how communication is to take place.

 //!
 //! For example, imagine that two threads, ‘A‘ and ‘B‘ want to communicate with
 //! the following pattern:
 //!
 //! 1. ‘A‘ sends an integer to ‘B‘.
 //! 2. ‘B‘ sends a boolean to ‘A‘ depending on the integer received.
 //!
 //! With session types, this could be done by sharing a single channel. From
 //! ‘A‘’s point of view, it would have the type ‘int ! (bool ? eps)‘ where ‘t ! r‘
 //! is the protocol "send something of type ‘t‘ then proceed with
 //! protocol ‘r‘", the protocol ‘t ? r‘ is "receive something of type ‘t‘ then proceed
 //! with protocol ‘r‘, and ‘eps‘ is a special marker indicating the end of a
 //! communication session.
 //!
 //! Our session type library allows the user to create channels that adhere to a
 //! specified protocol. For example, a channel like the above would have the type
 //! ‘Chan<(), Send<i64, Recv<bool, Eps>>>‘, and the full program could look like this:
 //!
 //! ‘‘‘
 //! extern crate session_types;
 //! use session_types::*;
 //!
 //! type Server = Recv<i64, Send<bool, Eps>>;
 //! type Client = Send<i64, Recv<bool, Eps>>;
 //!
 //! fn srv(c: Chan<(), Server>) {
 //! let (c, n) = c.recv();
 //! if n % 2 == 0 {
 //! c.send(true).close()
 //! } else {
 //! c.send(false).close()
 //! }
 //! }
 //!
 //! fn cli(c: Chan<(), Client>) {
 //! let n = 42;
 //! let c = c.send(n);
 //! let (c, b) = c.recv();
 //!
 //! if b {
 //! println!("{} is even", n);
 //! } else {
 //! println!("{} is odd", n);
 //! }
 //!
 //! c.close();
 //! }

A THE SESSION-TYPES LIBRARY 78

 //!
 //! fn main() {
 //! connect(srv, cli);
 //! }
 //! ‘‘‘


 #![feature(std_misc)]


 use std::marker;
 use std::thread::spawn;
 use std::mem::transmute;
 use std::sync::mpsc::{Sender, Receiver, channel, Select};
 use std::collections::HashMap;
 use std::marker::PhantomData;


 /// A session typed channel. ‘P‘ is the protocol and ‘E‘ is the environment,
 /// containing potential recursion targets
 #[must_use]
 pub struct Chan<E, P> (Sender<Box<u8>>, Receiver<Box<u8>>, PhantomData<(E, P)>);


 fn unsafe_write_chan<A: marker::Send + ’static, E, P>
 (&Chan(ref tx, _, _): &Chan<E, P>, x: A)
 {
 let tx: &Sender<Box<A>> = unsafe { transmute(tx) };
 tx.send(Box::new(x)).unwrap();
 }


 fn unsafe_read_chan<A: marker::Send + ’static, E, P>
 (&Chan(_, ref rx, _): &Chan<E, P>) -> A
 {
 let rx: &Receiver<Box<A>> = unsafe { transmute(rx) };
 *rx.recv().unwrap()
 }


 /// Peano numbers: Zero
 #[allow(missing_copy_implementations)]
 pub struct Z;


 /// Peano numbers: Increment
 pub struct S<N> (PhantomData<N>);


 /// End of communication session (epsilon)
 #[allow(missing_copy_implementations)]

 pub struct Eps;


 /// Receive ‘A‘, then ‘P‘
 pub struct Recv<A, P> (PhantomData<(A, P)>);


 /// Send ‘A‘, then ‘P‘
 pub struct Send<A, P> (PhantomData<(A, P)>);


 /// Active choice between ‘P‘ and ‘Q‘
 pub struct Choose<P, Q> (PhantomData<(P, Q)>);


 /// Passive choice (offer) between ‘P‘ and ‘Q‘
 pub struct Offer<P, Q> (PhantomData<(P, Q)>);


 /// Enter a recursive environment

A THE SESSION-TYPES LIBRARY 79

 pub struct Rec<P> (PhantomData<P>);


 /// Recurse. N indicates how many layers of the recursive environment we recurse
 /// out of.
 pub struct Var<N> (PhantomData<N>);


 pub unsafe trait HasDual {
 type Dual;
 }


 unsafe impl HasDual for Eps {
 type Dual = Eps;
 }


 unsafe impl <A, P: HasDual> HasDual for Send<A, P> {
 type Dual = Recv<A, P::Dual>;
 }


 unsafe impl <A, P: HasDual> HasDual for Recv<A, P> {
 type Dual = Send<A, P::Dual>;
 }


 unsafe impl <P: HasDual, Q: HasDual> HasDual for Choose<P, Q> {
 type Dual = Offer<P::Dual, Q::Dual>;
 }


 unsafe impl <P: HasDual, Q: HasDual> HasDual for Offer<P, Q> {
 type Dual = Choose<P::Dual, Q::Dual>;
 }


 unsafe impl HasDual for Var<Z> {
 type Dual = Var<Z>;
 }


 unsafe impl <N> HasDual for Var<S<N>> {
 type Dual = Var<S<N>>;
 }


 unsafe impl <P: HasDual> HasDual for Rec<P> {
 type Dual = Rec<P::Dual>;
 }


 impl<E> Chan<E, Eps> {
 /// Close a channel. Should always be used at the end of your program.
 pub fn close(self) {
 // Consume ‘c‘
 }
 }


 impl<E, P, A: marker::Send + ’static> Chan<E, Send<A, P>> {
 /// Send a value of type ‘A‘ over the channel. Returns a channel with
 /// protocol ‘P‘
 #[must_use]
 pub fn send(self, v: A) -> Chan<E, P> {
 unsafe_write_chan(&self, v);
 unsafe { transmute(self) }
 }
 }

A THE SESSION-TYPES LIBRARY 80



 impl<E, P, A: marker::Send + ’static> Chan<E, Recv<A, P>> {
 /// Receives a value of type ‘A‘ from the channel. Returns a tuple
 /// containing the resulting channel and the received value.
 #[must_use]
 pub fn recv(self) -> (Chan<E, P>, A) {
 let v = unsafe_read_chan(&self);
 (unsafe { transmute(self) }, v)
 }
 }


 impl<E, P, Q> Chan<E, Choose<P, Q>> {
 /// Perform an active choice, selecting protocol ‘P‘.
 #[must_use]
 pub fn sel1(self) -> Chan<E, P> {
 unsafe_write_chan(&self, true);
 unsafe { transmute(self) }
 }


 /// Perform an active choice, selecting protocol ‘Q‘.
 #[must_use]
 pub fn sel2(self) -> Chan<E, Q> {
 unsafe_write_chan(&self, false);
 unsafe { transmute(self) }
 }
 }


 /// Convenience function. This is identical to ‘.sel2()‘
 impl<Z, A, B> Chan<Z, Choose<A, B>> {
 #[must_use]
 pub fn skip(self) -> Chan<Z, B> {
 self.sel2()
 }
 }


 /// Convenience function. This is identical to ‘.sel2().sel2()‘
 impl<Z, A, B, C> Chan<Z, Choose<A, Choose<B, C>>> {
 #[must_use]
 pub fn skip2(self) -> Chan<Z, C> {
 self.sel2().sel2()
 }
 }


 /// Convenience function. This is identical to ‘.sel2().sel2().sel2()‘
 impl<Z, A, B, C, D> Chan<Z, Choose<A, Choose<B, Choose<C, D>>>> {
 #[must_use]
 pub fn skip3(self) -> Chan<Z, D> {
 self.sel2().sel2().sel2()
 }
 }


 /// Convenience function. This is identical to ‘.sel2().sel2().sel2().sel2()‘
 impl<Z, A, B, C, D, E> Chan<Z, Choose<A, Choose<B, Choose<C, Choose<D, E>>>>> {
 #[must_use]
 pub fn skip4(self) -> Chan<Z, E> {
 self.sel2().sel2().sel2().sel2()
 }
 }

A THE SESSION-TYPES LIBRARY 81



 /// Convenience function. This is identical to ‘.sel2().sel2().sel2().sel2().sel2()‘
 impl<Z, A, B, C, D, E, F> Chan<Z, Choose<A, Choose<B, Choose<C, Choose<D,
 Choose<E, F>>>>>> {
 #[must_use]
 pub fn skip5(self) -> Chan<Z, F> {
 self.sel2().sel2().sel2().sel2().sel2()
 }
 }


 /// Convenience function.
 impl<Z, A, B, C, D, E, F, G> Chan<Z, Choose<A, Choose<B, Choose<C, Choose<D,
 Choose<E, Choose<F, G>>>>>>> {
 #[must_use]
 pub fn skip6(self) -> Chan<Z, G> {
 self.sel2().sel2().sel2().sel2().sel2().sel2()
 }
 }


 /// Convenience function.
 impl<Z, A, B, C, D, E, F, G, H> Chan<Z, Choose<A, Choose<B, Choose<C, Choose<D,
 Choose<E, Choose<F, Choose<G, H>>>>>>>> {
 #[must_use]
 pub fn skip7(self) -> Chan<Z, H> {
 self.sel2().sel2().sel2().sel2().sel2().sel2().sel2()
 }
 }


 impl<E, P, Q> Chan<E, Offer<P, Q>> {
 /// Passive choice. This allows the other end of the channel to select one
 /// of two options for continuing the protocol: either ‘P‘ or ‘Q‘.
 #[must_use]
 pub fn offer(self) -> Result<Chan<E, P>, Chan<E, Q>> {
 let b = unsafe_read_chan(&self);
 if b {
 Ok(unsafe { transmute(self) })
 } else {
 Err(unsafe { transmute(self) })
 }
 }
 }


 impl<E, P> Chan<E, Rec<P>> {
 /// Enter a recursive environment, putting the current environment on the
 /// top of the environment stack.
 #[must_use]
 pub fn enter(self) -> Chan<(P, E), P> {
 unsafe { transmute(self) }
 }
 }


 impl<E, P> Chan<(P, E), Var<Z>> {
 /// Recurse to the environment on the top of the environment stack.
 #[must_use]
 pub fn zero(self) -> Chan<(P, E), P> {
 unsafe { transmute(self) }
 }
 }

A THE SESSION-TYPES LIBRARY 82



 impl<E, P, N> Chan<(P, E), Var<S<N>>> {
 /// Pop the top environment from the environment stack.
 #[must_use]
 pub fn succ(self) -> Chan<E, Var<N>> {
 unsafe { transmute(self) }
 }
 }


 /// Homogeneous select. We have a vector of channels, all obeying the same
 /// protocol (and in the exact same point of the protocol), wait for one of them
 /// to receive. Removes the receiving channel from the vector and returns both
 /// the channel and the new vector.
 #[must_use]
 pub fn hselect<E, P, A>(mut chans: Vec<Chan<E, Recv<A, P>>>)
 -> (Chan<E, Recv<A, P>>, Vec<Chan<E, Recv<A, P>>>)
 {
 let i = iselect(&chans);
 let c = chans.remove(i);
 (c, chans)
 }


 /// An alternative version of homogeneous select, returning the index of the Chan
 /// that is ready to receive.
 pub fn iselect<E, P, A>(chans: &Vec<Chan<E, Recv<A, P>>>) -> usize {
 let mut map = HashMap::new();


 let id = {
 let sel = Select::new();
 let mut handles = Vec::with_capacity(chans.len()); // collect all the handles


 for (i, chan) in chans.iter().enumerate() {
 let &Chan(_, ref rx, _) = chan;
 let handle = sel.handle(rx);
 map.insert(handle.id(), i);
 handles.push(handle);
 }


 for handle in handles.iter_mut() { // Add
 unsafe { handle.add(); }
 }


 let id = sel.wait();


 for handle in handles.iter_mut() { // Clean up
 unsafe { handle.remove(); }
 }


 id
 };
 map.remove(&id).unwrap()
 }


 /// Heterogeneous selection structure for channels
 ///
 /// This builds a structure of channels that we wish to select over. This is
 /// structured in a way such that the channels selected over cannot be
 /// interacted with (consumed) as long as the borrowing ChanSelect object

A THE SESSION-TYPES LIBRARY 83

 /// exists. This is necessary to ensure memory safety.
 ///
 /// The type parameter T is a return type, ie we store a value of some type T
 /// that is returned in case its associated channels is selected on ‘wait()‘
 pub struct ChanSelect<’c, T> {
 chans: Vec<(&’c Chan<(), ()>, T)>,
 }




 impl<’c, T> ChanSelect<’c, T> {
 pub fn new() -> ChanSelect<’c, T> {
 ChanSelect {
 chans: Vec::new()
 }
 }


 /// Add a channel whose next step is ‘Recv‘
 ///
 /// Once a channel has been added it cannot be interacted with as long as it
 /// is borrowed here (by virtue of borrow checking and lifetimes).
 pub fn add_recv_ret<E, P, A: marker::Send>(&mut self,
 chan: &’c Chan<E, Recv<A, P>>,
 ret: T)
 {
 self.chans.push((unsafe { transmute(chan) }, ret));
 }


 pub fn add_offer_ret<E, P, Q>(&mut self,
 chan: &’c Chan<E, Offer<P, Q>>,
 ret: T)
 {
 self.chans.push((unsafe { transmute(chan) }, ret));
 }


 /// Find a Receiver (and hence a Chan) that is ready to receive.
 ///
 /// This method consumes the ChanSelect, freeing up the borrowed Receivers
 /// to be consumed.
 pub fn wait(self) -> T {
 let sel = Select::new();
 let mut handles = Vec::with_capacity(self.chans.len());
 let mut map = HashMap::new();


 for (chan, ret) in self.chans.into_iter() {
 let &Chan(_, ref rx, _) = chan;
 let h = sel.handle(rx);
 let id = h.id();
 map.insert(id, ret);
 handles.push(h);
 }


 for handle in handles.iter_mut() {
 unsafe { handle.add(); }
 }


 let id = sel.wait();


 for handle in handles.iter_mut() {

A THE SESSION-TYPES LIBRARY 84

 unsafe { handle.remove(); }
 }
 map.remove(&id).unwrap()
 }


 /// How many channels are there in the structure?
 pub fn len(&self) -> usize {
 self.chans.len()
 }
 }


 /// Default use of ChanSelect works with usize and returns the index
 /// of the selected channel. This is also the implementation used by
 /// the ‘chan_select!‘ macro.
 impl<’c> ChanSelect<’c, usize> {
 pub fn add_recv<E, P, A: marker::Send>(&mut self,
 c: &’c Chan<E, Recv<A, P>>)
 {
 let index = self.chans.len();
 self.add_recv_ret(c, index);
 }


 pub fn add_offer<E, P, Q>(&mut self,
 c: &’c Chan<E, Offer<P, Q>>)
 {
 let index = self.chans.len();
 self.add_offer_ret(c, index);
 }
 }


 /// Sets up an session typed communication channel. Should be paired with
 /// ‘request‘ for the corresponding client.
 #[must_use]
 pub fn accept<P: HasDual>(tx: Sender<Chan<(), P::Dual>>) -> Option<Chan<(), P>> {
 borrow_accept(&tx)
 }


 #[must_use]
 pub fn borrow_accept<P: HasDual>(tx: &Sender<Chan<(), P::Dual>>)
 -> Option<Chan<(), P>> {
 let (c2, c1) = session_channel();


 match tx.send(c1) {
 Ok(_) => Some(c2),
 _ => None
 }
 }


 /// Sets up an session typed communication channel. Should be paired with
 /// ‘accept‘ for the corresponding server.
 #[must_use]
 pub fn request<P: HasDual>(rx: Receiver<Chan<(), P>>) -> Option<Chan<(), P>> {
 borrow_request(&rx)
 }


 #[must_use]
 pub fn borrow_request<P: HasDual>(rx: &Receiver<Chan<(), P>>) -> Option<Chan<(), P>> {
 match rx.recv() {

A THE SESSION-TYPES LIBRARY 85

 Ok(c) => Some(c),
 _ => None
 }
 }


 /// Returns two session channels
 #[must_use]
 pub fn session_channel<P: HasDual>() -> (Chan<(), P>, Chan<(), P::Dual>) {
 let (tx1, rx1) = channel();
 let (tx2, rx2) = channel();


 let c1 = Chan(tx1, rx2, PhantomData);
 let c2 = Chan(tx2, rx1, PhantomData);


 (c1, c2)
 }


 /// Connect two functions using a session typed channel.
 pub fn connect<F1, F2, P>(srv: F1, cli: F2)
 where F1: Fn(Chan<(), P>) + marker::Send + ’static,
 F2: Fn(Chan<(), P::Dual>) + marker::Send,
 P: HasDual + marker::Send + ’static,
 <P as HasDual>::Dual: HasDual + marker::Send + ’static
 {
 let (tx, rx) = channel();
 let t = spawn(move || srv(accept::<P>(tx).unwrap()));
 cli(request::<P::Dual>(rx).unwrap());
 t.join().unwrap();
 }


 /// This macro is convenient for server-like protocols of the form:
 ///
 /// ‘Offer<A, Offer<B, Offer<C, ... >>>‘
 ///
 /// # Examples
 ///
 /// Assume we have a protocol ‘Offer<Recv<u64, Eps>, Offer<Recv<String, Eps>,Eps>>>‘
 /// we can use the ‘offer!‘ macro as follows:
 ///
 /// ‘‘‘rust
 /// #[macro_use] extern crate session_types;
 /// use session_types::*;
 /// use std::thread::spawn;
 ///
 /// fn srv(c: Chan<(), Offer<Recv<u64, Eps>, Offer<Recv<String, Eps>, Eps>>>) {
 /// offer! { c,
 /// Number => {
 /// let (c, n) = c.recv();
 /// assert_eq!(42, n);
 /// c.close();
 /// },
 /// String => {
 /// c.recv().0.close();
 /// },
 /// Quit => {
 /// c.close();
 /// }
 /// }

A THE SESSION-TYPES LIBRARY 86

 /// }
 ///
 /// fn cli(c: Chan<(), Choose<Send<u64, Eps>, Choose<Send<String, Eps>, Eps>>>) {
 /// c.sel1().send(42).close();
 /// }
 ///
 /// fn main() {
 /// let (s, c) = session_channel();
 /// spawn(move|| cli(c));
 /// srv(s);
 /// }
 /// ‘‘‘
 ///
 /// The identifiers on the left-hand side of the arrows have no semantic
 /// meaning, they only provide a meaningful name for the reader.
 #[macro_export]
 macro_rules! offer {
 (
 $id:ident, $branch:ident => $code:expr, $($t:tt)+
) => (
 match $id.offer() {
 Ok($id) => $code,
 Err($id) => offer!{ $id, $($t)+ }
 }
);
 (
 $id:ident, $branch:ident => $code:expr
) => (
 $code
)
 }


 /// This macro plays the same role as the ‘select!‘ macro does for ‘Receiver‘s.
 ///
 /// It also supports a second form with ‘Offer‘s (see the example below).
 ///
 /// # Examples
 ///
 /// ‘‘‘rust
 /// #[macro_use] extern crate session_types;
 /// use session_types::*;
 /// use std::thread::spawn;
 ///
 /// fn send_str(c: Chan<(), Send<String, Eps>>) {
 /// c.send("Hello, World!".to_string()).close();
 /// }
 ///
 /// fn send_usize(c: Chan<(), Send<usize, Eps>>) {
 /// c.send(42).close();
 /// }
 ///
 /// fn main() {
 /// let (tcs, rcs) = session_channel();
 /// let (tcu, rcu) = session_channel();
 ///
 /// // Spawn threads
 /// spawn(move|| send_str(tcs));
 /// spawn(move|| send_usize(tcu));

A THE SESSION-TYPES LIBRARY 87

 ///
 /// loop {
 /// chan_select! {
 /// (c, s) = rcs.recv() => {
 /// assert_eq!("Hello, World!".to_string(), s);
 /// c.close();
 /// break
 /// },
 /// (c, i) = rcu.recv() => {
 /// assert_eq!(42, i);
 /// c.close();
 /// break
 /// }
 /// }
 /// }
 /// }
 /// ‘‘‘
 ///
 /// ‘‘‘rust
 /// #![feature(rand)]
 /// #[macro_use]
 /// extern crate session_types;
 /// extern crate rand;
 ///
 /// use std::thread::spawn;
 /// use session_types::*;
 ///
 /// type Igo = Choose<Send<String, Eps>, Send<u64, Eps>>;
 /// type Ugo = Offer<Recv<String, Eps>, Recv<u64, Eps>>;
 ///
 /// fn srv(chan_one: Chan<(), Ugo>, chan_two: Chan<(), Ugo>) {
 /// let _ign;
 /// chan_select! {
 /// _ign = chan_one.offer() => {
 /// String => {
 /// let (c, s) = chan_one.recv();
 /// assert_eq!("Hello, World!".to_string(), s);
 /// c.close();
 /// },
 /// Number => {
 /// unreachable!()
 /// }
 /// },
 /// _ign = chan_two.offer() => {
 /// String => {
 /// unreachable!()
 /// },
 /// Number => {
 /// unreachable!()
 /// }
 /// }
 /// }
 /// }
 ///
 /// fn cli(c: Chan<(), Igo>) {
 /// c.sel1().send("Hello, World!".to_string()).close();
 /// }
 ///

A THE SESSION-TYPES LIBRARY 88

 /// fn main() {
 /// let (ca1, ca2) = session_channel();
 /// let (cb1, cb2) = session_channel();
 ///
 /// spawn(move|| cli(ca2));
 ///
 /// srv(ca1, cb1);
 /// }
 /// ‘‘‘




 #[macro_export]
 macro_rules! chan_select {
 (
 $(($c:ident, $name:pat) = $rx:ident.recv() => $code:expr),+
) => ({
 let index = {
 let mut sel = $crate::ChanSelect::new();
 $(sel.add_recv(&$rx);)+
 sel.wait()
 };
 let mut i = 0;
 $(if index == { i += 1; i - 1 } { let ($c, $name) = $rx.recv(); $code }
 else)+
 { unreachable!() }
 });


 (
 $($res:ident = $rx:ident.offer() => { $($t:tt)+ }),+
) => ({
 let index = {
 let mut sel = $crate::ChanSelect::new();
 $(sel.add_offer(&$rx);)+
 sel.wait()
 };
 let mut i = 0;
 $(if index == { i += 1; i - 1 } { $res = offer!{ $rx, $($t)+ } } else)+
 { unreachable!() }
 })
 }

